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13

STRUCTURE AND ENERGY
OF HOMOPHASE
INTERFACES

In our discussion of homophase interfaces, we first examine the structure and prop-
erties of grain boundaries, which are the most common planar (two-dimensional)
defects in materials. We then look at special planar boundaries, such as twin inter-

faces and stacking faults.

13.1. GRAIN BOUNDARY ENERGY

As in the previous parts, we begin our discussion of grain boundaries by first exam-
ining some typical values of the grain boundary energy. Average grain boundary en-
ergies can be determined by annealing metal or alloy wires at high temperature in
vacuum and measuring the dihedral angle that forms where a grain boundary inter-
sects the surface, as illustrated in Figure 13.1. This method is called the thermal-
grooving technique [24], and the dihedral angle can be measured by optical interfer-
ometry or by scanning electron microscopy (SEM). In a manner similar to the
contact angle in Figure 7.1, the balance of the interfacial energies at the triple point
in Figure 13.1 yields the equation

Yoo = 2vSY cos (05V/2), (13.1)

where g, is the grain boundary energy, ¥V is the surface energy for the solid-va-
por case and 0V is the dihedral angle defining the groove. Measurement of 65V al-
lows the ratio of vg/yS" to be determined, and, if ySV is known, then the magnitude
of g can also be found.

Table 13.1 lists the interfacial energy ratio vyg/yS" for several f.c.c. metals. It
can be seen that the ratio yg,/ySV varies from approximately 0.25-0.35 for the f.c.c.
metals. A more extensive review by Murr [24] shows that this is typical for many
metals and alloys. We used these ratios and the data for the surface energies of the
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¥sv ¥sv

Figure 13.1. Thermal groove profile for grain boundary-surface equilibrium involving evape-
ration—condensation. The groove depth is d. From [24].

corresponding solid—vapor interfaces to calculate the grain boundary energies zc-
cording to Eq. (13.1); these are also shown in Table 13.1. If we examine the trenc
among silver, gold and copper, the three f.c.c. metals that we often used in Part IL
we see that silver and gold have very similar grain boundary energies, whereas ths
grain boundary energy of copper is significantly higher. This is not too differens
from our ranking of the solid surface energies, although the value for gold is a littl=
low. However, if the grain boundaries were truly average and there were no surfacs
contamination effects, the grain boundary energies should scale with the solid sur-
face energies shown in Table 3.3, provided the grooves formed by the same therma
grooving mechanism. The fact that they do not indicates that such data should be in-
terpreted with caution. We see in subsequent sections that grain boundary energies
are highly dependent on orientation.

The temperature coefficients of the grain boundary energy have been mez-
sured for only a small number of metals and alloys, and these are also shown for ths
f.c.c. metals in Table 13.1. Examples of the grain boundary energy versus temperz-
ture for nickel and stainless steel are shown in Figure 13.2. The temperature coeffi-
cients for grain boundaries are negative and appear proportionally smaller tha=
those for solid surface energies, as given in Eq. (3.15).

Table 13.1. Average grain boundary energies for various f.c.c. metals

Yo/ Y3V Temperature Yeb dygy/dT
Metal (mJ/m?) (0] (mJ/m?) (mJ/m2-°C)
Al 0.23 450 324 -0.12
Cu 0.34 950 625 -0.10
Ni 0.38 1060 866 -0.20
Ag 0.25 950 375 -0.10
Au 0.27 1000 378 -0.10
Pt 0.29 1300 660 -0.18

Source: From [24].
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Figure 13.2. Variation of grain boundary energy gy for nickel and stainless steel with temper-
=+ure below the melting point. From [24].
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13.2. GRAIN BOUNDARY STRUCTURE

A number of different analytical models have been proposed to describe the struc-
wure and properties of grain boundaries. The models vary both in their approach and
degree of sophistication. Several of the more important ones are discussed in the
following sections. The discussion progresses in approximate order of historical de-
velopment, beginning with the early interpretation of low-angle grain boundaries in
rerms of dislocation networks by Read and Shockley [25,26] and closing with re-
cent comprehensive atomistic simulations by Wolf and Merkle [2,7]. Most of the
analytical treatments that have been developed for grain (homophase) boundaries
can be similarly applied to interphase (heterophase) interfaces. To emphasize the
generality of the methods and to avoid duplication in Chapter 14 on heterophase in-
rerfaces, extension of the treatments from homophase to heterophase interfaces is
included with the discussion of each model in this chapter on homophase interfaces.

13.2.1. Dislocation Models

Symmetrical Tilt Grain Boundary One of the simplest types of grain bound-
aries to visualize is a symmetrical tilt boundary, where two grains on either side of the
boundary are related by symmetrical rotations about an axis lying in the boundary
plane. Figure 13.3 illustrates such a boundary in a simple cubic structure, where the
boundary was formed by joining two crystals having surfaces rotated from a cube
plane by +6/2 about a <100> axis. When the two surfaces are joined, the ledges on
them become edge dislocations of Burgers vector b, where the magnitude of the
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Figure 13.3. Symmetrical-tilt grain boundary in a simple cubic crystal. The plane of the figure
is parallel to a cube face and normal to the axis of rotation of the two grains. (a) The two grains
are rotated by an angle 6 and (b) joined to form a bicrystal (grain boundary). From [25].

Burgers vector b = |b| is equal to the ledge height A,. A similar tilt boundary for an
atomistic model with {111} surfaces and a <110> tilt axis was previously shown in
Figure 12.2b. Joining the crystals in Figure 13.3b requires only elastic strain except
where planes of atoms terminate at the boundary in an edge dislocation, indicated by
the symbol +. Here the atoms have fewer nearest neighbors than in the bulk.

From the geometry in Figure 13.3b, the number of edge dislocations per unit

length in the grain boundary is given by

or when 6 is small by

2 sin (6/2)

b

= 6/b,

(13.22)

(13.2b)
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where D is the distance between the grain boundary dislocations. This boundary
constitutes a wall of dislocations and Read and Shockley [26] have calculated the
energy of such an array, situated in an infinite medium of shear modulus x and
Poisson’s ratio v. An important consideration in their analysis is that each disloca-
tion has an elastic strain energy per unit length E. that varies according to the spac-
ing between the dislocations D. Thus, the elastic strain energy must be integrated as
2 function of 6 to find its angular dependence. The grain boundary energy vy, is
then given by the product of the energy per unit length of the dislocations E, times
the density of the dislocations as vy, = E. (1/D) = E_ (8/b). The resulting expression
for the energy per unit area of the grain boundary vy, is given by

Ygo = £00(4o —~ In 6), (13.32)

M
Eo= 4m(1 -v)

b
and A4,=1 +ln( ) (13.3b)
2’"7’0

and r, represents the core energy of a single boundary dislocation. The grain bound-
ary energy Yy, has units of energy per unit area (mJ/m?).

The term 4, in parentheses in Eq. (13.3) depends on the total core energy of the
dislocation per unit area of the boundary, whereas the In 8 term accounts for the elas-
tic energy of the boundary. The first term represents a constant energy per disloca-
tion, and it leads to an increase in the energy that is proportional to the density of the
dislocations. The second term decreases as 6 increases because the stress fields of the
dislocations overlap and cancel one another as D decreases. Hence, this equation can
only be applied to boundaries having a small angle of tilt (6 ~ 10—15 degrees) such
that the cores of the dislocations do not overlap. Such boundaries are referred to as
low-angle tilt boundaries. Also note that the Read—Shockley equation shows that it is
energetically favorable for two low-angle tilt boundaries with misorientations 6, and
6, to combine to form a single tilt boundary with angle (8, + 8,). In addition, differ-
entiation of Eq. (13.3a) predicts that -y, has a maximum at 6 = exp(4, - 1).

A plot of Eq. (13.3a) is shown in Figure 13.4, where it is seen that the cusp at
6 = 0 is very sharp when the boundary disappears; that is, dry,g,/d6 becomes infinite
at 6 = 0. This is because a long-range stress field is established when an isolated
ledge is pressed into another crystal to make a grain boundary dislocation. Thus, the
energy of a tilt boundary rises steeply as its angle increases from zero because the
strain field of each dislocation spreads out to very large distances in the crystal
when they are widely separated. This contrasts with the much shallower cusps found
at solid—vapor interfaces, where the energy is localized at the ledges and reverts to
the surface energy of the singular surface when 6 = 0. In the tilt boundary, the slope

becomes less steep as the stress fields approach one another and begin to cancel,
and eventually the slope becomes almost constant at high tilt angles. Using this dis-
location concept of a low-angle symmetrical tilt grain boundary, we see that the
boundary has many characteristics that are similar to vicinal solid-vapor interfaces,
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Figure 13.4. Energy of a tilt grain boundary as a function of tilt angle 8 with £, = 1450 mJ/m?
(appropriate for copper) and A, = 0. Reprinted from [31] by permission of Addison-Wesley
Longman Publishing Company, Inc.

such as a low energy cusp at low tilt angles, but that the nature of the elastic strains
are an additional important part of this solid—solid interface.

Although the dislocation model was developed for low-angle grain bound-
aries where the dislocation cores are well-defined and surrounded by regions of rel-
atively well-bonded crystal, it can be extended on a purely geometrical basis to
high-angle boundaries. If the angular tilt is continued beyond the low-angle regime,
the energy is expected to increase only slightly as the density of dislocation cores
increases and shallow cusps are expected to occur at particular angles of tilt where
the dislocations are uniformly spaced. According to the formula for a simple cubic
lattice, this occurs when cot (6/2) = 2n, where n is an integer. For example, when cot
(6/2) = 14, there is one dislocation on every seventh cube plane, or when cot (6/2) =
2 (or 6 = 53°) the structure is particularly simple and forms a twin plane, as shown
in Figure 13.5. In this case, the twin plane is (210), and the atoms in the twin bound-
ary lie on the lattices of both grains. The density of atoms on the boundary plane is
high, and the resulting grain boundary energy is low. This type of boundary is some-
times referred to as a special high-angle grain boundary.

A uniform dislocation spacing in a high-angle grain boundary such as in Fig-
ure 13.5 only results when the dislocation spacing is an integral number of lattice
planes terminating at the boundary as illustrated in Figure 13.6a. When the misori-
entation changes in a symmetrical high-angle tilt grain boundary, the dislocation
spacing ideally varies from uniform to nonuniform, as shown schematically in Fig-
ure 13.6. A nonuniform grain boundary can be described as consisting of a uniform
dislocation array and a superimposed nonuniform array. For example, the nonuni-
form 60° symmetrical-tilt boundary in Figure 13.6b can be described as a 53° tilt
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Figure 13.5. High-angle tilt boundary of good fit. The (210) twin boundary (arrows) is normal
0 the plane of the figure and the dark circles represent atoms that lie on points of lattices of

both grains. From [27].

boundary (Fig. 13.6a) with a superimposed 7° tilt boundary. With further tilt to 62°,
the boundary once again becomes uniform but with a higher dislocation density, as
illustrated in Figure 13.6¢c. The variation in energy of such symmetrical tilt bound-
aries has been calculated assuming that the energy consists of the sum of the two su-
perimposed dislocation arrays and is shown in Figure 13.7. Note the cusp at a 53°
tilt in Figure 13.7 corresponding to the (210) boundary in Figure 13.5.

VI VY

Y
4
a b c
Figure 13.6. Dislocation models of symmetrical tilt boundaries showing the variation in unifor-

y
mity of the spacing with misorientation angle: (a) 53°, (b) 60° and (c) 62° misorientation. From
[24].
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Figure 13.7. Relative grain boundary energy versus misorientation angle for symmetrical &%
boundaries which vary in uniformity of dislocation arrays. Cusps correspond to uniform array=

From [24,28].

Both atomistic calculation and experimental data suggest that the cusps
shown in Figure 13.7 exist. For example, Figures 13.8a and b compare calculat=c
and experimental data for the grain boundary energies of symmetrical <100> an<
<110> grain boundaries in f.c.c. aluminum. The calculations were performed us-
ing a Morse potential for aluminum, similar to the 6~12 Lennard-Jones potentiz.
that we have used frequently in this book. The atomistic calculations are similar =

but more realistic than the pure dislocation model described above, because thes
allow for atomic relaxations and translations along the boundary that are not =-
cluded in the dislocation model. The experimental and calculated curves in Figur=
13.8 are in generally good agreement, although the small cusps associated with =
<100> tilt boundary in Figure 13.8a are not evident experimentally in Figure 13.5%
due to their relatively small magnitude compared to the scatter in the data. In co=-
trast, the large cusps at about 70° and 129° in Figures 13.8¢ and d are clearly &~
ident, and these are associated with low-energy {111} and {113} twin boundanss
which are possible with rotation about the <110> axis. The {111} twin boundars
was shown previously in Figure 12.1. Note that the magnitudes of the calculas=t
grain boundary energies in Figure 13.8 are about twice the measured values given
in Table 13.1.

We look at atomistic calculations of grain boundary structures in depth = =
subsequent section, but it is worth noting that plots like Figures 13.7 and 13.8 =
semble the ySY plots seen previously in Chapters 3 and 4. A slightly different type o
plot could also be obtained by maintaining a constant angle of tilt between two crys
tals and varying the grain boundary plane. This would be very much analogous =
the ySV plots for solid—vapor interfaces in Section 3.4. Certain orientations of &=
plane will have particularly low energies, and these will likely become facet plam=s
of enclosed crystals. An example of this is illustrated below in our discussion of &
asymmetrical tilt boundary.
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Figure 13.8. (a,c) Calculated and (b,d) experimental grain boundary energies as a function of
misorientation angle for (a,b) <100> and (c,d) <110> symmetrical tilt boundaries in aluminum.
Reprinted from [29,30] with kind permission from Elsevier Science-NL, Amsterdam, The

Netherlands.

R

Asymmetrical Tilt Grain Boundary The tilt boundary in Figure 13.3b can be
turned out of its symmetrical orientation by rotating it about the tilt axis through an
angle ®, as illustrated in Figure 13.9. In this case, the angle @ is the angle between
the boundary plane and the mean <100> direction of the two grains. The boundary
makes an angle of ® + 6/2 with the [100] direction in one grain and angle of ® —6/2
with the [100] direction in the other grain. Figure 13.3 is thus a special case where
® = 0 or 90°. When the boundary becomes asymmetrical, edge dislocations with
extra planes that are normal to those of the original set are introduced, and it can be

shown that their spacing [25] is given by
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b,

D2 = m’ (1343.)

whereas the spacing of the original set is reduced to

b,

D, = ey (13.4b)
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Figure 13.9. The same grain boundary as in Figure 13.3 except that the plane of the boundary
makes an arbitrary angle ® with the mean (010) planes in the two grains. Note the new set of
perpendicular dislocations introduced into the boundary. From [25].
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The new dislocations increase the energy of the boundary sharply as @ increases
from zero because they are far apart. Shockley and Read [26] showed that the ener-
gy of this boundary has the same form as the symmetrical tilt boundary with an ad-
ditional dependence on @ and that a sharp cusp exists when @ = 0.

Twist Grain Boundary A more drastic change in the grain boundary structure
is produced by rotating the tilt boundary in Figure 13.3 through 90° about an axis in
the plane of the boundary and normal to the tilt axis. The boundary is then normal
to the <100> axis about which the two grains are rotated, and it is called a twist
boundary. It consists of a grid of screw dislocations, as shown in Figure 13.10. The
screw dislocations are visible as regions of poor matching where there is a shear dis-
placement parallel to the lines of distortion. It can be shown [31] that if a vector is
drawn parallel to a [100] direction in the mean lattice between the two grains in a
twist boundary, such as Figure 13.10, the number of [010] screw dislocations that it
intersects per unit length, is given by the same formula as that for the number of
edge dislocations in a tilt boundary in Eq. (13.2), or 1/D = (2 sin 6/2)/b, where b is
the magnitude of the Burgers vector of the screw dislocation. Thus, the energy of a
twist boundary increases with the angle of twist in the same general way as the en-
ergy of a tilt boundary increases with the angle of tilt.
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Figure 13.10. A pure (relaxed) twist boundary between two simple cubic crystals. The bound-
ary is in the plane of the figure and the two grains have a small rotation about the cube axis
normal to the boundary. The open circles represent atoms just above the plane of the bound-
ary in one grain and the solid circles atoms just below in the opposite grain. Atoms at the in-
terface have been relaxed to produce regions of good atomic matching (A) separated by re-
gions of poor matching (B), which are the screw dislocations. From [25].
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As for tilt boundaries, the energy of a twist boundary should be cusped at 2
gles of twist at which the atoms fit well together in the boundary, although atomisz
calculation has shown that these cusps are generally much shallower. For exampls.
the 53° rotation about <100> that produced a cusp in the energy of the cubic =&
boundary, also produces a twist boundary normal to <100> on which the atoms &=
uniformly. This is shown in Figure 3.11, where the net of lattice points commor =
both grains in Figure 3.11 and the similar net of coincident points lying on the cor-
responding tilt boundary in Figure 13.5, are indicated in each figure. Thus, bom
boundaries lie on a plane of the coincident atom sites in the two crystals.

Unlike the edge dislocation networks shown in Figures 12.2 and 13.3, it is nex
possible to reveal the atomic structure of screw dislocation networks by HRTEM.
because their Burgers vector lies parallel to the line direction of the dislocations.
That is, there is no displacement of the atomic columns perpendicular to the view-
ing direction when the boundary is edge-on. However, these dislocations can be o=~
served by diffraction contrast imaging techniques in the TEM [32,33] (as can ecz=
or mixed dislocations). Figure 13.12a shows a bright-field TEM image of the disle-
cation structure in a (001) pure twist low-angle boundary in gold [33,34]. The inter-
face is oriented normal to the viewing direction, and the dislocations are visible ==

Figure 13.11. Twist boundary of good fitin a simple cubic lattice. The boundary is paralie! =
the plane of the figure. One lattice is indicated by circles and the other by crosses so that @
coincident positions are easily visible. From [27].
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Figure 13.12. (a) Bright field TEM image of a cross-grid of screw dislocations in a pure twist
boundary (8 = 1°) in gold. From [34] copyright Taylor & Francis Ltd. (b) Comparison of experi-
mental and calculated spacings of dislocations for (001) twist boundaries in gold. From [33].
The filled circles are the results of Schober and Balluffi [34] and the open circles are from the
results of Tan et al. [35].

dark lines in the interface. The boundary consists of an orthogonal array of screw
dislocations in agreement with the model shown in Figure 13.10. In their investiga-
tion, Schober and Balluffi [34] examined a series of such twist boundaries with
misorientations of 1 to 9 degrees and used contrast analyses to establish that the two
sets of dislocations in the boundary had Burgers vectors b = 1/2[110] and 1/2[110].
Their results showed that the screw dislocation spacing in the grain boundary varied
with 0 as expected from the simple relation D = b/6, as illustrated in Figure 13.12b.
The same type of data were also generated for low-angle tilt boundaries and found
to agree with the predictions of Eq. (13.2).

Degrees of Freedom of a General Grain Boundary The symmetrical tilt
boundary in Figure 13.3 is a special type of boundary, which can be specified by the
axis of tilt and the single angle 6. A general grain boundary has five degrees of free-
dom (DOF), or five quantities that are required to define it. These are often referred
to as the five macroscopic degrees of freedom of a general grain boundary. Three
values are required to specify the rotation that brings the lattice of one grain parallel
to the other and two more values are required to specify the orientation of the
boundary plane with respect to one of the grains. These features are illustrated in
Figure 13.13. In this figure, we imagine that we cut a crystal along two arbitrary
planes, take out the wedge-shaped material in between the two cuts, and bring the
two grains together with a twist. The resulting boundary has five degrees of free-
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Dislocations

Figure 13.13. Formation of a general grain boundary with five degrees of freedom. In this fig-
ure, the misorientation is specified by a rotation 6 about a common axis | in both grains. In a
pure tilt boundary, I lies in the plane of the boundary and leads to a set of parallel edge dislo-
cations, indicated by lines on the exposed crystal surface. The vector | is normal to the bound-
ary plane in a pure twist boundary. From [25].

dom. If 1 is taken as a unit vector parallel to the axis of relative rotation of the two
grains, the rotation between the two grains can be represented by the vector

u, =10, (13.5)

which has three independent components or DOF. The orientation of the boundary
may then be specified by a unit vector n normal to the boundary plane, which re-
quires two additional DOF. A pure twist boundary is thus defined as one where 1 is
parallel to n and for a pure tilt boundary 1is perpendicular n. The quantity 10 is of-
ten called the axis-angle pair for the grain boundary.

There are various ways of expressing the crystallography of a grain boundary
using the five degrees of freedom [2]. One method, which is similar to Figure 13.13
but emphasizes the importance of the interface plane relative to the two grains is il-
lustrated in Figure 13.14. In this figure, we create a general grain boundary by z
twist rotation  about the common grain-boundary plane normal n, which is parallel
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Figure 13.14. lllustration of the five macroscopic degrees of freedom of an arbitrary bicrystal
interface using the interface-plane scheme. (a) The orientations of ny, n, and ny in a fixed
(x,y,2) coordinate system, (b) a tilt rotation of the two crystal coordinate systems so that n, is
parallel to n,, and (c) introduction of the twist component by rotating the top crystal about n
by the angle 6. From [2].

to the surface normals, n, and n,, of the two grains that form the grain boundary.
The degrees of freedom (DOF) of the grain boundary can then be specified as

DOF = {n;, n,, 0} (13.6a)

or in cubic crystals, where it is possible to use the Miller indices of the crystal

planes instead of their normals, Eq. (13.62) is conveniently expressed as

DOF = {(hkl),, (hk),, 6}. (13.6b)

The twist component (n,. 0) of a general grain boundary described by Eq. (13.6a) is

governed by 6 and the grain boundary normal n, whereas its tilt component (ny,{),
governed by the condition that ny is perpendicular to n;,ny, is given by

_[ny xmy)
nr = T ¥ (13.7a)

and

sin 41 = In] X nzl, (137b)
where np is a unit vector defining the orientation of the tilt axis and ¥ denotes the
tilt angle, as illustrated in Figure 13.14. Using this method, referred to as the inter-
face-plane scheme [2], ¥ = 0 for a pure twist boundary with twist angle 6, and 6 =0
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for a pure tilt boundary with tilt angle {s. A general grain boundary thus has values
for both 6 and .

The interface-plane scheme developed for grain boundaries is similar to the
notation that is often used to describe the interface plane or orientation relationship
between two different phases at a heterophase interface. In the case of two different
phases a and B, the interface is often specified by a set of parallel (k4J) planes and
[uvw] directions in the two phases as

(hkd)o|(hkD)g; [uvw]oll[uvwlg, (13.8)

where the symbol || is used to indicate the parallel relationship and the [uvw] direc-
tions are contained in the parallel (k&) planes [36]. Specifying a set of parallel di-
rections within the (/) planes is similar to specifying a rotation angle 6, as in Eq.
(13.6a). It is often found that heterophase interfaces do not lie along the parallel set
of planes in the two phases given by Eq. (13.8). In this case, it is common to specify
the orientation relationship between the two phases according to Eq. (13.8) and then
to denote the interface plane as an (#k/) plane in either (or both) of the phases. For
the situation of precipitates in a matrix, the matrix plane is often chosen. An exam-
ple of such notation is shown by the (474), interface in Figure 12.7, and additional
examples are discussed in Section 14.6.1.

In addition to the five macroscopic degrees of freedom, there are three inde-
pendent translational (or so-called microscopic) degrees of freedom for a grain
boundary involving translations T = (T, T), T,) parallel (x, y) and perpendicular (z)
to the interface plane. Computer simulations and HRTEM have shown that such
translations occur frequently at grain boundaries. From a thermodynamic viewpoint
the z component of T perpendicular to the interface is important, because it ac-
counts for any volume expansion in the interface. Such an excess free volume at the
interface is expected to be closely related to its excess free energy and to give rise to
stresses near the interface that are similar to the well-known surface stress discussed
with regard to surfaces in Part IL. This so-called excess free volume per unit area of
the interface [2] is defined by

AV,-=(6V/6A)T,P,N'., (139)

where the volume expansion is given in units of the lattice parameter. We see in a
later section on atomistic modeling of grain boundaries that this volume expansion
is an important parameter related to the grain boundary energy.

Frank’s Formula for the Dislocation Content of a Boundary The dislo-
cation content of a general grain boundary can be determined according to the theo-
ry of Frank [37]. The same procedure can be applied to heterophase interfaces
where there is a change in crystal structure across the interface [1,38]. This theory is
illustrated for a grain boundary geometrically in Figure 13.15. In Figure 13.15a, a
reference lattice has been cut along A4’ by a plane with a normal specified by the
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(e)

Figure 13.15. lllustration of the derivation of the net Burgers vector B crossing a vector x in a
planar grain boundary AA’ with unit normal n, where lattice + is rotated with respect to lattice
- by an angle 8 in a right-handed sense about an axis | directed into the plane of the page
through the point O. From [33].
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unit vector n, so as to divide the lattice into two crystals represented by +and —. In
Figure 13.15b, crystal + is rotated by an angle +6/2 and crystal — by an angle of —6/2
in a right-handed sense about an axis defined by a unit vector I passing through the
lattice point O and directed into the page. In Figure 13.15c, these two misoriented
lattices are extended untii they join at the original cut, forming a grain boundary. A
vector x, which can have any direction in this boundary plane, is then chosen to ex-
tend from the origin O over several unit cells, as illustrated in Figure 13.15¢. The net
Burgers vector of the dislocations in the grain boundary which intersects x can be
determined by comparing a Burgers circuit containing the vector X in the bicrystal
with an equivalent circuit in the reference lattice. This is done using the finish-to-
start, right-hand (FS/RH) convention [25,39] with the closure failure being made in
the good crystal. The circuit in the bicrystal (Fig. 13.15c¢) is a closed circuit made in
a right-handed sense around an axis parallel to (x x n), where n is defined as point-
ing from crystal — into crystal +. This circuit is also made in a right-handed sense
with respect to the rotation axis 1. The circuit starts at S, the end-point of the vector
x extends through crystal + to the origin O and then returns through crystal — to the
point F, which is coincident with S. In the reference lattice redrawn in Figure
13.154, the first part of the circuit SO in the crystal + is represented by 5.0 and the
second part of the circuit, OF in crystal —, is represented by OF . There is clearly 2
closure failure F_S, = B in the reference lattice, and this defines the net Burgers
vector of those dislocations contained in the boundary that are intersected by the
vector x. In general, the vector x makes an angle ® with 1 as shown in Figure
13.15e, so the resulting vector B has a magnitude given by

|B| = |x|2 sin (6/2) sin ® (13.10)

with a direction along (x x 1). Furthermore, because

|x x 1| = |x| sin @, (13.11)
then
B = (x x 1)2 sin (8/2), (13.12a)
which, for small 6, yields
B=(x x1)0. (13.12b)

Equation (13.12b) is the general formula derived by Frank for the net Burgers vec-
tor of the dislocations required geometrically to accommodate the misorientation at
a general grain boundary. The quantity B is the sum of the Burgers vectors of all the
dislocations intersected by x or

B=) mb, (13.13)
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where n, is the number of dislocations of Burgers vectors b; cut by x. When the net
Burgers vector B of Eq. (13.12) arises from three independent arrays of grain
boundary dislocations with noncoplanar Burgers vectors by, b, and b;, with line di-
rections parallel to unit vectors £, &, and &, and with spacings D, D, and D, then
Eq. (13.12) can be written as

nyby + nyby + n3by =2 sin (8/2)(x X 1), (13.14)

where the values of n; with their appropriate signs are given by n; = N;x, where N;
is a vector in the plane of the boundary normal to the line directions of the disloca-
tions in the ith array, with a magnitude equal to the reciprocal of their spacing. It is

thus defined as

-8 (13.15)

Several points should be made regarding Eqgs. (13.12) and (13.14). Firstly,
they apply only to boundaries that are essentially flat and have no long-range stress
field (i.e., the elastic distortion is restricted to the region close to the dislocations).
Secondly, the equations do not uniquely determine the dislocations present at the
boundary or their pattern for a given crystal and boundary. Thus, a variety of possi-
ble dislocation structures could exist and the most probable one is the one with the
lowest energy. Thirdly, the density of a given set of dislocations in a boundary is di-
rectly proportional to 6 for small 6. Fourthly, each set of dislocations is straight,
equally spaced and parallel even for a boundary containing several sets of disloca-
tions with different Burgers vectors. Lastly, a general boundary requires three sets
of dislocations with three non-coplanar Burgers vectors at the boundary, and Frank’s
formula can be applied to analyze all possible cases, either to determine the possible
dislocations arrangements if n, 1 and 8 are known, or conversely, to find the orienta-
tion, and so on, if the dislocation content is specified. These cases are analyzed else-
where [25,33] and are not discussed further here.

13.2.2. O-Lattice Formulation

The Read and Shockley dislocation model for low-angle tilt and twist grain bound-
aries discussed in Section 13.2.1 is appealing because it is relatively easy to under-
stand both physically and analytically and because it has been shown to be experi-
mentally correct for low-angle grain boundaries. Unfortunately, the dislocation
model becomes unphysical for high tilt angles, and an alternative description for the
structure and energy of high-angle grain boundaries is required. Although several
different approaches to this problem have been tried, none has the sort of predictive
capability and accuracy that is usually desired. In fact, it is only recently that exten-
sive atomistic simulations have provided sufficient data to explain the properties of
high-angle grain boundaries in a simple physical manner [2,7]. !
The purpose of this book is to explain the structure and properties of inter-
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faces using relatively simple analytical treatments that are based on a nearest-neigh-
bor atomistic model of the interfaces whenever possible. In keeping with this theme,
we defer discussion of the atomistic calculations of grain boundary structure and
energies until we have considered two methods for quantifying interfacial structure
that have gained popularity and that relate to the previous dislocation description of
interfacial structure. These are the so-called O-lattice and coincident site lattice/dis-
placement shift complete (CSL/DSC) descriptions of grain and interphase bound-
ary structure. Both treatments are geometrical models based on the matching of
hard-sphere atoms across an interface and they complement the previous hard-
sphere models used to understand solid—vapor and solid-liquid interfaces in Parts II
and IIL. These theories build on the Read and Shockley dislocation model and
Frank’s equation for the dislocation content of a grain boundary; we examine them
in some detail prior to the atomistic simulations. The O-lattice and CSL/DSC theo-
ries are developed for grain boundaries for simplicity, but examples are provided to
demonstrate that they can be applied directly to heterophase interfaces.

Bollmann developed a technique for analyzing the structure of grain and in-
terphase interfaces that is quite general and has a number of useful properties
[40-43]. His method is based on the concept of the O-lattice, which describes the
matching and mismatching of oriented lattices at an interface. We develop this theo-
ry by reference to Frank’s formula for the Burgers vector content of a general grain
boundary in Figure 13.15 and show that in fact, Bollmann’s O-lattice equation is
mathematically similar to Frank’s formula in Eq. (13.12).

If we refer to Figure 13.15d, the net Burgers vector B of the dislocations i
the boundary that are intersected by the vector x is given by

B=F_S,=0S,-0F..

If R, is defined as the rotation tensor (I, +6/2) which transforms the reference la:-
tice into +, and R_ as the rotation tensor (1, —6/2) which transforms the reference la-
tice into lattice —, then

0S.=R3!'x and OF_=RI'x,
so that
B=R;!-R)x. (13.16)
In Eq. (13.16), B and x are expressed with respect to the reference lattices in Fig-
ures 13.15a and d. However, if one of the lattices is chosen as the reference lattics.
say crystal +, and B and x are expressed in this lattice, then Eq. (13.16) becomes

B=(I-R)x, (13.17

where R is the rotation tensor that transforms lattice + into lattice —, and I is ths
identity matrix.
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The advantage of expressing the relationship between the two crystals by Eq.
(13.17) is that it can be readily generalized to apply to heterophase interfaces by re-
placing the rotation tensor R with a general deformation tensor A, which transforms
the lattice of crystal + into the lattice of crystal —, and involves a strain as well as a
rotation [1,38,44]. Thus, with respect to crystal +, the net Burgers vector of those
dislocations contained in the heterophase interface that are intersected by a vector x

is given by

B=(-A")x. (13.18)

The properties of Eq. (13.18) are similar to those for the grain boundary described
in Eqs. (13.12) and (13.14) in that for a general heterophase interface, B must be the
resultant Burgers vector of at least three independent arrays of interfacial disloca-
tions with non-coplanar Burgers vectors. Thus, we can write an equation similar to
Eq. (13.14) but for the case of two different crystal lattices,

nlbl +n2b2+n3b3=(I—A_l)x, (13.19)

where in this case n is the unit vector normal to the heterophase interface and is di-
rected from crystal — into crystal +. The similarity between Eqgs. (13.19) and (13.14)
indicates that the arrays of dislocations in heterophase interfaces can be considered
in the same way as for grain boundaries.

We are now able to derive the basic equation of O-lattice theory after having
expressed Eq. (13.18) in a way that is applicable to any type of interface through a
matrix A, which relates the two crystal lattices. If two misoriented crystal lattices,
specified here as 1 and 2 to indicate that they may be different lattice types, are al-
lowed to interpenetrate, there will be a periodic set of points in space (not generally
lattice points of either lattice), where, for each point, the internal coordinates in a
cell of lattice 1 are identical with the internal coordinates in a cell of lattice 2. This
set of points defines Bollmann’s O-lattice [40]. In terms of a general deformation
tensor A, which transforms lattice 1 into lattice 2, a point defined by a vector x@ in
lattice 2 is generated from a point defined by a vector x( in lattice 1 according to

x® = Ax®), (13.20)

A point on the O-lattice is therefore defined by a vector x© when x® differs from
x(D by a translation vector b® of lattice 1, that is, when

x@ = x© = x( + pO = AxD, (13.21)
From this set of equations, we have
bL = (I - AH)x©, (13.22)

which is the basic equation of O-lattice theory [40]. This equation gives the O-lat-
tice vectors in terms of the vectors of crystal lattice 1. In this equation, b® corre-
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sponds to B in Egs. (13.12) or (13.18) and x© corresponds to x. Thus, the vectors
x(© cross dislocations with Burgers vectors summing to b, referred to lattice 1.

As an example, we will derive the O-lattice solution for two simple cubic
crystal lattices that are rotated about the [001] axis referring to the coordinate sys-
tem of lattice 1, as illustrated in Figure 13.16. This example follows the work of
Smith and Pond [42]. The transformation tensor A is a rotation R, which can be
written

cos® -sinf O
A=R=| sinf cos® 0|,

0 0 1
so that
cos® sin6 O
Al'=| —sin® cos® O
0 0 1
and
1-cos6 —sin 0 0
I-ANH= sin 0 l-cos® O |.
0 0 0
C/
9\
ot g
b
P.qQ
A—l x(l). x(‘)

Figure 13.16. Diagram showing the difference vector b® between x(") and x® for a simple cu-
bic unit cell having an O-point with internal coordinates (p,q). From [42].
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Substituting (I — A™!) into Eq. (13.22) gives

1-cos6 -sin® 0 || x b,
sin 6 1-cos® O f|x|=]|b]
0 0 0 X3 b3

where x,, x, and x; and b,, b, and b5 are the components of x(© and b®. This ex-
pression can be written explicitly as three linear equations:

(1 —cos 0)x; — (sin 8)x, + Ox3 = b, (13.23a)
(sin B)x, + (1 — cos B)x, + Ox; = b, (13.23b)
0x, + 0x2 sk 0X3 = b3, (13.23C)

where by = 0 and x; can have any value. Equation (13.23c) means that there are no
uncancelled components of the Burgers vector parallel to the rotation axis of the
grain boundary x;. Therefore, the O-lattice consists of lines going through points
x,© and x,(?, which have discrete values. The primitive vectors of the O-lattice in
the plane perpendicular to the rotation axis (i.e., for a pure twist boundary) can be
found by assuming a Burgers vector of unity and solving Eqgs. (13.23a) and (13.23b)

simultaneously as
1—cosH —sin 6 x| _[b
sin 6 l1—cos® ||x; b |

so
<.0=[%]= 1/2 1/2 cot (6/2) 1
12 *a ~1/2 cot (6/2) 12 o
and the primitive vectors are
x,(@=1/2,-1/2 cot (6/2) (13.24a)
x,(@ = 1/2 cot (6/2), 1/2. (13.24b)

Note that x,(? and x,(? are continuous functions of 6 and that, when 6 is
small, Egs. (13.24) reduce to the result given by Frank’s formula in Egs. (13.2) and
(13.12); that is, the dislocation spacing D is given by b (unity in this case) divided
by 6. Also notice that there are particular values where the cot (6/2) in Egs. (13.24)
are rational, for example, when cot (6/2) = integer. This situation was illustrated pre-
viously in Figure 13.5 where cot (6/2) = 14. Whenever the cot (6/2) = 2n for both
1, and x, (i.e., it is even for both), the O-point has integral coordinates and is
thus a crystal lattice site. When either or both of the O-points are odd, the O-point is
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either in the center of an edge or in the center of a crystal cell. This illustrates the
general result that points of the O-lattice need not coincide with crystal lattice sites.

In the derivation of Eq. (13.22), it was assumed that the points defined by the
vectors x(© have identical internal coordinates in both lattices 1 and 2, and the b®
vectors are all lattice translation vectors. Physically, this means that the interface
under consideration is comprised of perfect crystal dislocations. In the section that
follows, we see that other dislocations with Burgers vectors that are less than a full
lattice translation are possible at an interface. This does not mean that the O-lattice
theory is incorrect but rather, that the choice of Burgers vectors at an interface is
ambiguous and some additional criteria must be considered to determine the most
favorable Burgers vectors at the interface. This is a weakness of the O-lattice theory
in terms of its predictive capabilities. Another shortcoming is that the theory can be
used to analyze an interface if A and n and/or the dislocation Burgers vectors b®
are known, but it cannot be used to predict n or b®™ without knowing A and using
some other criteria.

The physical interpretation of the O-lattice in terms of grain boundaries is
that the O-points in Eq. (13.22) are points of geometric registry (minimum strain)
between crystal lattices 1 and 2. Between each of these O-points, there is an accu-
mulating disregistry that reaches the value b® at a neighboring O-point. Thus, it is
imagined that the misfit between any set of O-points is concentrated onto planes be-
tween the O-points just as the misfit between two identical but slightly rotated lat-
tices relaxes into a low-angle boundary network of dislocations, as in Figure 13.10.
In the example above, where the axis of rotation was parallel to [001] in the two lat-
tices, the O-lattice construction yields O-lines parallel to the rotation axis with two
orthogonal planes of dislocations bisecting the space between the O-lines as illus-
trated in Figure 13.17. Note that a plane taken perpendicular to the O-lines in this
figure would look exactly like Figure 13.10. In the case of a general grain or inter-
phase boundary, the set of planes on which misfit is condensed defines a three-di-
mensional cell structure with each cell enclosing an O-point. Consequently, wherev-
er the interface plane cuts a cell wall there is a dislocation with Burgers vector b®).

Although this section is primarily concerned with the structure of grain
boundaries and therefore a rotation R between two crystals, it is convenient to illus-
trate the use of the O-lattice theory for a different kind of transformation tensor A,
in which there is a simple dilatation Aa between two simple cubic crystal lattices.
This also serves to emphasize the generality of the O-lattice formulation to other
types of transformations. We see a second example of the O-lattice applied to a rota-
tion between two crystals in the next section. The dot patterns included as Appendix
D can be used to duplicate these and other examples.

Figure 13.18a shows schematically, a (001) projection of the O-lattice be-
tween two simple cubic lattices with the same orientation but different lattice para-
meters, where crystals 1 and 2 are represented by dots and crosses, respectively, and
the O-points are circled. The two lattices are related by a simple dilatation Aa and
inspection shows that the O-lattice itself is a simple cubic lattice. The b® vectors
lie between the O-points, that are indicated by circles in the figures. The dislocation
spacing in the O-lattice is given as (1 + Aa)/Aa, which is equivalent to the inverse

Figure 13.17. Schemal
with the O-lattice of twc

of the misfit 3 in Eq.
tice vectors perpend!
around the O-lattice
is chosen so that it [
mize the amount of g
zbove the interface [
face plane downwarc
points are regions of
ation of the interfac
crossed). This illustr
ically using the basic

13.2.3. Coincider

The previous O-latt
nique for analyzing |
space when their or




1. This illustrates the
h crystal lattice sites.
»oints defined by the
1 and 2, and the b®™
ns that the interface
s. In the section that
at are less than a full
zan that the O-lattice
ors at an interface is
) determine the most
f the O-lattice theory
hat the theory can be
Burgers vectors b™
mowing A and using

" grain boundaries is
ry (minimum strain)
nts, there is an accu-
g O-point. Thus, it is
rated onto planes be-
t slightly rotated lat-
s, as in Figure 13.10.
1 [001] in the two lat-
otation axis with two
the O-lines as illus-
to the O-lines in this
eneral grain or inter-
d defines a three-di-
onsequently, wherev-
. Burgers vector b®).
e structure of grain
s convenient to illus-
sformation tensor A,
:ubic crystal lattices.
formulation to other
tice applied to a rota-
ncluded as Appendix

of the O-lattice be-
different lattice para-
ses, respectively, and
sle dilatation Aa and
tice. The b® vectors
ures. The dislocation
ivalent to the inverse

13.2. GRAIN BOUNDARY STRUCTURE

; ity
(
\
(
\

Sl ™S =4

Figure 13.17. Schematic representation of the O-lines and dislocation cell walls associated
with the O-lattice of two simple cubic lattices rotated about a common [001] axis. From [42].

of the misfit & in Eq. (13.18). Figure 13.18b shows the planes that bisect the O-lat-
tice vectors perpendicular to the plane of the figure. These form square cell walls
around the O-lattice points in three dimensions. In Figure 13.18c an interface path
is chosen so that it passes through as many O-points as possible in order to maxi-
mize the amount of good matching in the interface. When crystal 1 is removed from
above the interface plane in Figure 13.18c and crystal 2 is removed from the inter-
face plane downward, the interface in Figure 13.18d results. In this interface, the O-
points are regions of good matching and these are separated by regions where relax-
ation of the interface into dislocations has occurred (where the cell walls were
crossed). This illustrates the O-lattice construction, which can be performed analyt-
ically using the basic O-lattice equation (Eq. 13.22).

13.2.3. Coincident Site and Displacement Shift Complete Lattices

The previous O-lattice theory provides us with a convenient mathematical tech-
nique for analyzing possible dislocation structures between two arbitrary lattices in
space when their orientation relationship is known. It is a useful technique, but it
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Figure 13.18. lllustration of the O-lattice construction for a dilatation between two simple cu-
bic lattices: (a) (001) projection of the O-lattice, (b) cells walls drawn midway between the C-
points, (c) interface path through highest density of O-points, and (d) section showing dislocz-
tions at the interface. From [42].

has limitations in that it cannot predict certain aspects of interfacial structure tha
are commonly found at interfaces, such as ledges and partial dislocation structures.
In addition, as with the Read and Shockley analysis, its meaning becomes unclear iz
the case of high-angle grain boundaries. An alternate technique for quantifying the
interfacial structure of grain and interphase boundaries for any angle of tilt or orien-
tation is provided by the coincident site lattice (CSL) and displacement shift com-
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plete (DSC) lattice constructions provided in this section. The CSL/DSC theory was
actually developed before O-lattice theory, but the O-lattice was introduced first in
this chapter because of its close relation to Frank’s equation for the dislocation con-
tent of a grain boundary in Section 13.2.1. In this section, we develop the CSL/DSC
construction for grain boundaries using a pure tilt boundary for purposes of illustra-
tion, and then show that the CSL/DSC framework can be readily extended to in-
clude heterophase interfaces as well.

Coincident Site Lattice We have seen previously in Figures 13.5 and 13.11
that when two identical interpenetrating lattices are rotated from initial coincidence
around a lattice point, there are certain discrete rotation angles where lattice points
other than the origin coincide. An example often found in the literature is shown in
Figure 13.19a, in which two simple cubic lattices, one indicated by solid dots and
the other by open circles, are outlined by a dashed and solid square, respectively.
The two lattices have been rotated 36.9° about an axis perpendicular to the plane of
the figure, as in Figure 13.11, and the pattern that results is often referred to as the
dichromatic pattern. In this case cot (6/2) = 3 and the [310] vector in one lattice is
coincident with the [310] vector in the other lattice. This rotation causes one-fifth of
the lattice points of the simple cubic crystal to coincide, and this is true for f.c.c.
and b.c.c. lattices as well. The coincident points themselves form a lattice, called the
coincident site lattice (CSL), which is indicated by filled circles and outlined in Fig-
ure 13.19b. The lattice vectors of the CSL are given as

1/2[310],]]1/2[310],,
1/2[1301,]|1/2[130], and
1/2[121],]11/2[211],.

The CSL is characterized by 3., the inverse density of coincident sites, alter-
natively expressed as the ratio of the area of the coincident lattice cell to that of the
original lattice. For the example shown in Figure 13.19, 3 = 5, because two out of
every ten atoms (i.e., the corner atoms) in each unit cell of the CSL lattice are coin-
cident. Any rational <uvw> lattice vector can be used to generate a CSL; it has been
shown [46] that all possible CSLs in the cubic system can be described by the func-
tion

S=x+N?2 (13.25)

where x and y are nonnegative integers representing the Cartesian coordinates of the
lattice point joined to the origin, and N = »? +1? + w?. A CSL is always generated
for a rotation of 180° about a rational direction <uvw>. When the value of 2, deter-
mined from Eq. (13.25) is even, it must be divided by two until an odd number re-
sults. For example, a <310> vector where % = 10 and a <210> vector where % = 5
generate the same % = 5 CSL, shown in Figure 13.19b. Thus the 3 = 10 CSL must
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be divided by two to yield the £ = 5 CSL in Figure 13.19b. The angle of misorienta-
tion corresponding to a particular CSL is given by

=2 tan"' (Wx) N'2, (13.26)

where 6 = 180° corresponds to x =0, y = 1. Thus, the rotation of 180° around <uvw> ]
in a cubic system gives rise to a CSL of 2 = u? + v* + w? if N is odd or N2 if N is ‘
even.

Because the same values of % may be generated by E. (13.25) from different ‘,
sets of x, y and N, different CSLs that yield the same values are distinguished by la- \
beling them a, b, ¢, and so on. The corresponding axis-angle pairs for coincidence
boundaries in the cubic system for % values ranging from 1 to 19 calculated from
Eq. (13.25) are shown in Table 13.2. Usually, both 3 and the axis-angle pair are
specified in CSL nomenclature, that is, 2 = 5, 36.9°/[001] for Figure 13.19b. The
inclination of the boundary is then specified by the Miller indices of the boundary
plane in both lattices, that is, (hkl),(hkl),, similar to the DOF specified in Eq.
13.6b). For the symmetric tilt boundary in Figure 13.19c, the complete CSL nota-
tion is 3 = 5 (310) 36.9°/[001], where only one (hkl) is necessary, because the
boundary is symmetric. The values of 6 in Table 13.2 correspond to ideal coinci-
dence boundaries. A more extended tabulation is given by Mykura [47].

In Figure 13.19¢ a (310) boundary plane was chosen, and opposite lattice
types were discarded from either side of the boundary, leaving a grain boundary
composed of typical structural units, as indicated in the figure. Although the densi-
ty of coincident sites depends only on the orientation relationship between two crys-
tals, the density of coincident sites at a boundary depends on the choice of the
boundary plane intersecting the CSL. Special grain boundaries have a high density
of coincident sites and therefore a low value of . It seems reasonable to expect that
the energy of a grain boundary should be proportional to X, but except in the case of
some special grain boundaries, it has been shown that there is no simple correlation
between the two. This is a disappointment of the CSL theory, but we now know that
this lack of correlation is from volume expansions and translations that frequently
occur at grain boundaries to minimize the energy of the boundary. Such relaxations
cannot be predicted from simple geometric theories.

Figure 13.20 shows an HRTEM image of a 2 = 5 (310) 36.9°/[001] symmet-
rical tilt grain boundary in cubic nickel oxide [48]. The atomic columns appear as
dark spots in this image and a regular pattern of structural units at the boundary is
evident as predicted by the CSL construction in Figure 13.19¢c. However, note that
there is a lack of mirror symmetry across the boundary in the HRTEM image that is
present in the unrelaxed CSL model in Figure 13.19c. This is due to a slight transla-

c crystals 36.9° about

ble (130),, (130), grain \ tion of the boundary involving the three microscopic degrees of freedom discussed
dashed lines). (e) The ‘ in Section 13.2.1, and it is such translations that limit the hard-sphere CSL model
n after translation by a ‘ from accurately describing the energies of grain boundaries. Thus, to fully under-
CSL. From [45]. ' stand the correlation between the structure and energy of high-angle grain bound-

aries, it has been necessary to employ extensive atomistic calculation, as described
in Section 13.2.4. The CSL theory does provide a simple and useful geometric mod-
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Table 13.2. Some axis-angle pairs for CSL boundaries in the cubic lattice system
(CH b} e I e 3 e 3

<100> Axis <221> Axis <410> Axis <522> Axis

262 13a 61.93 17b 10792 13b 16025 17b

2807 17a 90.00 9 15273 9 _—

3687 5 112,62 13b 180.00 17a <530> Axis

5313 5 143.13 5 —_— 142.14  19b

6193 17a 13000 9 <411> Axis 180.00 17a

67.38 13a 9337 17a —

11262 13a <310> Axis 12952 11 <531> Axis

11807 17a 76.66 13b 15347  19b 99.59 15

12687 5 93.02 19a 180.00 9 12622 11

14313 5 11538 7 — 160.81 9

15193 17a 14490 11 <421> Axis —

157.38 13a 180.00 5 11358 15 <532> Axis

—_— —— 15538 11 180.00 19b

<110> Axis <311> Axis — —_—

2653 19a 5070 15 <430> Axis <533> Axis

3894 9 67-11 9 11807 17b 10535 17a

5048 11 9574 S 15738  13b 130.83  13b

7053 3 117.82 15 — 162.66 11

86.63 17b 14644 3 <431> Axis —_—

9337 17b 180.00 11 137.17 15 <551> Axis )

10947 3 _ 180.00 13b 11001 19 Figure 13.20. HR'
12952 11 <320> Axis A—— 13443 15 <001> tilt-axis. A c
141.06 9 7159 19 <432> Axis 16406 13a the boundary, whi
15347 19 10048 11 12176 19 S——— | from Argonne Nati
_— 12197 17b 15896 15 <553> Axis I
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27.80 13b 180.00 13a <433> Axis 165.16 15 i

3821 7 _— 142.14  19a —_— ‘ el for understanc
46.83 19b <321> Axis 180.00 17b <610> Axis | ing between two
60.00 3 86.18 15 —_— 16133 19a ‘ '
7317 19 12375 9 <441> Axis 16133 19a ‘ has been used &
81.79 7 150.07 15 16025 17a _— | terfaces with cor
9220 13b 180.00 7 _— <611> Axis ‘ Any lattict
147.80 13b E——— <510> Axis 180.00 19a ' 13.22) because
158.21 7 <322> Axis 137.17 15 " two lattices amc¢
166.83 19b 107.92 13a 180.00 13a <711> Axis \ ©)

180.00 3 15273 9 —_— 110.01  19a ; ; a;e CSI}; b
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Figure 13.20. HRTEM image of a % = 5 grain boundary in nickel oxide viewed parallel to the
<001> tilt-axis. A digitally averaged image in the inset shows a representative structural unit of
the boundary, which is slightly asymmetrical. Reprinted from [48] with additional permission
from Argonne National Laboratory.

=1 for understanding interfacial structure in terms of atom matching and mismatch-
ing between two crystals across the interface for any degree of misorientation, and it
nas been used extensively in describing the dislocation structure of solid-solid in-
rerfaces with considerable success.

Any lattice vectors of the CSL are solutions x(? of the O-lattice equation (Eq.
13.22) because at each independent site the rotational displacements between the
~wo lattices amount to a lattice translation b®), However, not all O-lattice vectors
@ are CSL vectors. This point is illustrated by the complete O-lattice for the % =5
soundary shown in Figure 13.19d. When the orientation between the two lattices is
not exactly equal to that necessary for a CSL, all the coincident sites (except the
center of rotation) are lost. In contrast, the O-lattice is still maintained with lattice
vectors x(©, which are now irrational although close to the rational CSL vectors.
Thus, the O-lattice changes continuously between the discrete CSLs.

Displacement Shift Complete Lattice Geometrically, high-angle grain
soundaries can be treated as small deviations from the nearest CSL. They are then
similar to low-angle grain boundaries, where small deviations from the perfect sin-
gle crystal (i.e., % = 1 CSL) are accommodated by lattice dislocations. Any devia-
sion from a CSL is accommodated by lines of high local distortion or dislocations in
between regions of undistorted CSL. In the case of low-angle grain boundaries, the
gislocations are usually called primary dislocations and the boundary between them
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is perfect crystal (% = 1). In the case of high-angle grain boundaries, the disloca-
tions are called secondary dislocations and the boundary between them is perfect
CSL.

The displacement shift complete (DSC) lattice defines the possible Burgers
vectors of secondary dislocations [49]. These are perfect grain boundary disloca-
tions that conserve the structure of the optimal coincidence orientation boundary.
The DSC lattice acquired its name because it is a lattice of pattern-conserving dis-
placements (i.e., a displacement of one crystal with respect to the other by a DSC
vector restores the dichromatic pattern but with shifted coincidence sites). Thus, it
causes a pattern shift that is complete. This feature is illustrated with reference to
the 3 = 5 CSL in Figures 13.19¢ and f. In Figure 13.19e, the DSC lattice was con-
structed by defining the coarsest lattice that contains all of the sites of crystals 1 and
2 in the coincidence orientation as sublattices. The DSC lattice is indicated by the
fine square mesh in this figure. Note that the DSC lattice points are not all transla-
tionally equivalent in the surroundings of crystals 1 and 2. When lattice 1 is shifted
by the DSC vector indicated by an arrow in Figure 13.19f, the dichromatic pattern
of the lattices is restored, but the resulting CSL (solid line) is shifted from its origi-
nal position (dashed line).

The utility of the DSC construction is that any misorientation from the per-
fect S = 5 CSL orientation can be accommodated by these secondary dislocations
with areas of perfect 3 = 5 boundary in between. The secondary dislocations thus
occur when the primary dislocations are so close that they are not physically sepa-
rate. The DSC dislocations then accommodate the irregularity in the periodicity of
the primary dislocations, similar to the situation previously illustrated in Figure
13.6 using only primary dislocations. The secondary grain boundary dislocations
required to accommodate the small misorientation from the exact CSL can be de-
scribed by an equation equivalent to Eq. (13.12a) for low-angle boundaries, or

B, = (x X q) 2 sin (8¢s1/2), (13.27)
where B, is the net Burgers vector content of the secondary grain boundary disloca-
tions intercepted by any vector x lying in the plane of the boundary, and B¢gy is the
angular departure from the exact CSL orientation about an axis g common to one of
the grains and the CSL. An important property of Eq. (13.27) is that it does not suf-
fer from the ambiguity in the uniqueness of the Burgers vectors discussed for Eq.
(13.12a). Equation (13.27) gives a unique value for the net Burgers vector B, of the
secondary grain boundary dislocation network because it is a property of the inter-
section of the translational symmetry elements of the two crystals and this is
unique.

Formally, the DSC lattice can be defined as the lattice of difference vectors
(i.e., vectors linking the lattice sites of crystal 1 to crystal 2), between lattices 1 and
2 in the exact coincidence orientation. Analytically, this can be expressed as

d®@S0) = x@ — x( = (] - A)x?, (13.28)
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where d@SO is a DSC lattice vector and the other symbols have the same meaning
as in Eqgs. (13.21) and (13.22). Another way of finding DSC vectors is to note that
the DSC lattice for two direct lattices 1 and 2 is the reciprocal lattice of the CSL
formed by the reciprocal lattices of 1 and 2 for the same axis and angle of rotation
[50). The reciprocal relation between the CSL and DSC lattices means that as % in-
creases the primitive DSC vectors decrease in magnitude. Equation (13.28) can be
solved graphically if % is not too high by drawing the two lattices in the coincidence
orientation and position and finding the DSC vectors by inspection, as in Figure
13.19. In this case, the lattice vectors of the DSC lattice are given as

1/10[310],,
1/10[130], and
1/10[215],.

Otherwise, the DSC vectors must be found analytically.

Schober and Balluffi [34] were the first investigators to provide strong exper-
imental evidence for the CSL model of grain boundary structure by demonstrating
that secondary grain boundary dislocations accommodated departures from CSL
orientations. Their original results on twist boundaries in gold as well as those ob-
tained in subsequent investigations are summarized in Figure 13.21. This figure
shows the variation in dislocation spacing with twist angle 6 for both primary and
secondary grain boundary dislocations. The spacing Dy; of the secondary grain
boundary dislocations in the crossed grids varied with angular departure 6cs. from
each of the exact CSL orientations according to the same relationship given for pri-
mary dislocations in Eq. (13.2b), or

Dy; = |bg;[/6csL, (13.29)

where by, is the Burgers vector of the ith secondary grain boundary dislocation. The
Burgers vectors that were found to satisfy Eq. (13.29) were the basis DSC vectors
that were compatible with the line directions of the screw dislocations. Thus, for the
near 3, = 5, 3 = 13 and = = 17 boundaries, the Burgers vectors found for the sec-
ondary grain boundary dislocations were of the type 1/10<310>, 1/26<510> and
1/34<530>, respectively. In addition, for the case of the near 3, = 5 boundaries, the
Burgers vectors were found to agree with the contrast observed in TEM images of
the interfaces, as illustrated in Figure 13.22. Note the weak contrast of the disloca-
tions due to their small Burgers vectors as compared to Figure 13.12a.

It is important to note that the DSC lattice contains both lattices 1 and 2 in the
coincidence orientation and position as sublattices. Therefore, it is continuous
across any grain (or interphase) boundary and provides a suitable reference lattice
on which Burgers circuits may be drawn [52]. This is an important point since vari-
ous defects, such as ledges, occur at grain and interphase boundaries, and we need a
method to quantify the nature of these defects. Thus, we now examine the character
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Figure 13.21. Variation of dislocation spacing with twist angle for primary and secondary
grain boundary dislocations in gold. From [33] and [34,51] copyright Taylor & Francis Ltd.

Figure 13.22. TEM image showing a cross-grid of secondary grain boundary dislocations in a
near I = 5 (001) twist boundary in gold. From [34] copyright Taylor & Francis Ltd.
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of ledges in grain boundaries using the DSC lattice as our reference lattice. This is
followed by extension of the CSL/DSC construction to interphase boundaries.

Structure and Properties of Grain and Interphase Boundary Line De-
fects The topology of line defects that exist in grain boundaries in cubic materi-
als is readily established within the framework of the DSC model [52,53]. The most
general type of line defects possess both dislocation and ledge character, which can
be defined by the Burgers vector b and the ledge vector s, respectively. (The term
“step” is often used instead of “ledge” in the literature, but we use the term ledge to
indicate its similarity with the ledges discussed in Parts II and II1.) Possible line de-
fects therefore include those with both dislocation and ledge character and special
ones which are either pure dislocations or pure ledges. In addition, the line defects
may be classified as intrinsic when they represent an integral part of the equilibrium
boundary structure and extrinsic when they represent extra defects superimposed on
the equilibrium structure. We mainly consider intrinsic defects.

If the dislocation character of a line defect is that of a perfect grain boundary
dislocation, then the Burgers vector must be that of the DSC lattice, because this is
composed of all lattice translation vectors of lattice 2 with respect to lattice 1 that
conserve the atomic (dichromatic) pattern. The ledge vector then corresponds to a
shift in space of the above pattern, which occurs when lattice 2 is translated with re-
spect to lattice 1 by the Burgers vector. These ledge vectors are always vectors of the
crystal lattices and therefore also of the DSC lattice. The topological properties of
these line defects in grain boundaries can be revealed with the DSC framework us-
ing the examples shown in Figure 13.23.

In Figure 13.23, the Burgers vector of the dislocation is seen to be a vector of
the DSC lattice as are ledge vectors s, and s, in lattices 1 and 2, respectively. The
Burgers vector of the defect on the left can be readily obtained by constructing a
Burgers circuit using the DSC lattice as the reference lattice as described by Hirth
and Balluffi [52]. The Burgers vector and ledge vectors are related by

b= $; — 8, (1330)

The heights of the ledges in the boundary plane (with their appropriate signs) are
given by s, - n and s, - n for lattices 1 and 2, respectively, where n is a unit vector
normal to the boundary plane and pointing from crystal 1 into crystal 2. In Figure
13.23,s, - n=s, - n and the effective ledge height produced by the line defect in the
relaxed boundary structure is given by s, - n=s, - n. Whens, - n # s, - n, the effec-
tive ledge height may be taken as 1/2(s; +s,) * n.

A line defect that is a pure ledge without dislocation character is obtained in
the special case when s; — s, = b = 0. An example is the pure ledge at 4B in
Figure 13.23, where s, = s, is a vector of the CSL. Conversely, a line defect that
is a pure grain boundary dislocation without ledge character is obtained in the spe-
cial case when s, - n =s, - n = 0. An example would be a grain boundary dislo-
cation lying in a boundary plane parallel to the VWUT plane of the CSL shown in
Figure 13.23, possessing the same Burgers vector b as the dislocation shown at C.
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Figure 13.23. Line defects in a S = 5 symmetrical-tilt boundary produced by 36.9° rotation
around [001]. A line defect possessing both dislocation and ledge character is shown on the
left at C and a pure ledge is shown at AB. The Burgers vector and ledge vectors of the two
line defects are shown in the diagram in the upper right. Reprinted with permission from [53]
by Elsevier Science Ltd., Oxford, England.

These line defects possess a number of important topological properties summa-
rized below.

1. Movement in the plane of the boundary of a line defect that possesses a dislo-
cation character (which may require glide and climb) causes lattice 2 to trans-
late with respect to lattice 1.

2. Movement of a line defect that possesses a ledge character causes the inter-
face to translate with respect to lattices 1 and 2.

3. Climb of line defects possessing a dislocation character allow the boundary to
act as a source or sink for point defects.

4. Lattice dislocations b® that impinge on the boundary may dissociate into an
integral number of grain boundary line defects b; because the Burgers vectors
of the lattice dislocations and the interfacial dislocations are all vectors of the
DSC lattice and must obey the conservation relation b = nb,, where n; is
the number of grain boundary dislocations of type i.

5. Lattice dislocations that cut through a boundary leave behind a line defect
with dislocation character possessing a Burgers vector given by the DSC lat-
tice.

The description of line defects in a grain boundary (homophase interface) by
the DSC lattice can be readily extended to general heterophase interfaces. The de-
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wils of this construction have been thoroughly discussed [53,54]. We examine only
%2 end results to show that dislocations and ledges in general heterophase bound-
aries can be analyzed within the same DSC framework developed for grain bound-
sries above. This construction provides a convenient way to quantify the character
of line defects at heterophase interfaces in much the same way that we quantify the
Burgers vectors of lattice dislocations [39].

Figures 13.24 and 13.25 show semicoherent planar and inclined interphase
aterfaces between two lattices (phases), respectively. The lattices can be assumed to
se related by the transformation matrix A in Eq. (13.18). The vectors b, s, and s, in
shese figures have the same meanings as in Figure 13.23. The cells indicated as M,
and M, in the figures identify a pair of cells in the strain free lattices (phases) 1 and
2 which almost match each other in both size and shape. These cells are usually, but
not always, sublattices of the respective crystal lattices. The fine lines in the figures
indicate the DSC lattice formed from lattices 1 and 2 in the same way as in Figures
13.19e and 13.23.

The line defects in the general interfaces have basically the same dislocation
and ledge features as their counterparts in the special case of grain boundaries in
-ubic materials discussed previously. The ledge vector s is defined in the same way
and for the defects in the boundary illustrated in Figure 13.24, s, n =5, - n=0.
These line defects are therefore interfacial dislocations without any ledge character
and a Burgers vector b defined by the DSC lattice between M; and M,. They are of-

DSC-I Lattice M, Cell

L
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b bt |t b | 2 4 L4 Nmp BOUﬂde
— — s = o=t - — — et D'OM
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- s - -1 -
AVNEPNE N . ] (Phase 2)
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1
B
1
B |
|
1
1

1 . B S |

%

DSC-2 Lattice M_Cell

Figure 13.24. The interphase boundary between two different lattices (phases) My and M,
which form a planar interface containing interfacial dislocations with a spacing determined by
O-lattice theory. The Burgers vector and ledge vectors of the interfacial dislocations are
shown in the diagram in the upper right. The DSC lattice is indicated by fine lines in the figure.
Reprinted with permission from [53] by Elsevier Science Ltd., Oxford, England.
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Figure 13.25. An interphase boundary between lattices 1 and 2 in Figure 13.24, but with the
boundary plane at a different inclination. Two types of line defects are present possessing
both dislocation and ledge character. The Burgers vectors and ledge vectors are illustrated in
each case. Reprinted with permission from [53] by Elsevier Science Ltd., Oxford, England.

ten referred to as misfit dislocations, and this is a typical semicoherent interface [1]
as illustrated previously in Figure 7.7 and Figure 12.5. In the general case, the line
defects will have both dislocation and ledge character as seen in Figure 13.25,
where a boundary is shown that differs from the boundary in Figure 13.24 only by 2
rotation of the interface plane. In this case, s, - n # s, - n # 0 for one type of line
defect (indicated by T) and s, =0 and s, - n # 0 for the other (indicated by —). A
ledge is therefore evident at each defect. Note that unlike the atom positions around
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the two dislocations in Figure 13.24 where a terminating plane is evident, the atom

planes are completely coherent around the ledges (indicated by T) for which s, - n

= 0. Such defects are commonly found at high-index interfaces in both martensitic

6] and diffusional [16] solid—solid transformations and are often referred to as

rransformation dislocations or structural ledges [1,55,56] depending on their role in \

the interface. The ledges in Figure 12.7 possess this type of defect character. }
It is also possible to have pure interphase boundary ledges without DSC lat- ‘

tice dislocation character, as shown in Figure 13.26, where a pure ledge has been in-

serted in the boundary shown previously in Figure 13.24. In this case, s, =s; and b

=5, —s, = 0, although in the DSC lattice framework the ledge may have an associat-

=d weak, long-range stress field if isolated in the boundary without complete relax-

ation by other DSC lattice dislocations in the interface, as apparent in the figure

[53]. Because the line defects in general interphase boundaries have basically the

same dislocation and ledge features as their counterparts in grain boundaries in cu-

bic crystals, we expect them to possess the same basic topological properties sum-

marized previously for grain boundaries. ‘
In summary, the DSC lattice framework is general and it provides a means of i

quantifying the various types of line defects found in grain and interphase bound- |

‘ aries in materials. In many cases, the DSC lattice can be obtained by simple graphi- ‘
cal construction based on the atomic positions in the structures, as in the examples

‘ shown here. The Burgers vectors and ledge vectors of interfacial line defects can

then be obtained directly from the construction. In cases where graphical construc- ;

tion is difficult, the problem can be solved by computer techniques. The main limi- ‘

tations of the DSC method are that (a) it is a geometric hard-sphere construction ‘

r\\ ¥ Lattice |

‘ Lattics 2

Figure 13.26. Pure ledge in the interphase boundary illustrated previously in Figure 13.24.
The ledge vectors are shown above the ledge. Reprinted with permission from [53] by Elsevier
Science Ltd., Oxford, England.




346 STRUCTURE AND ENERGY OF HOMOPHASE INTERFACES

and thus unable to account for local atomic relaxations that can occur at interfaces,
and (b) it represents an approximation in near-coincidence situations when there are
two different types of lattices, as in Figure 13.24, for example. In spite of these lim-
itations, it is easy to apply and useful for analyzing many different types of inter-
faces.

Before ending this section, it is worth noting that Pond [57,58] has developed
a method for quantifying the nature of line defects in interfaces based on the space
group symmetries of the adjacent crystals. This method is completely general and
does not suffer from the limitations of the hard-sphere models above in its capabili-
ty to quantify the character of interfacial defects. Because a thorough knowledge of
space group crystallography is required to utilize this technique, it is not discussed
in this book. However, it is highly recommended as additional reading for those fa-
miliar with space group notation. Several other approaches to the determination of
grain boundary structure that have been developed are not mentioned here, becauss
they are not critical to our discussion and they are summarized elsewhere
[24,33,42,59].

13.2.4. Atomistic Modeling of Grain Boundary Structure and Energy

The main purpose of atomistic investigations of grain boundary structure is to relats
the structure and grain boundary energy vy, to the grain misorientation and bound-
ary plane. The calculations are usually performed by establishing an initial relation-
ship between two grains using the five macroscopic degrees of freedom discussed
in Section 13.2.1. An atomic potential is chosen and the bicrystal is then allowed to
relax into a minimum energy configuration through a suitable algorithm, as dis-
cussed in Section 1.3 [7,60]. Relative translations of the two lattices through the
three microscopic degrees of freedom and/or local atomic rearrangements are all al-
lowed as part of the minimization process. Initially, there was some question as to
the validity of the interatomic potentials used in the calculations, the approxima-
tions used to reach equilibrium and whether calculated energy minima correspond-
ed to real energy minima, but these uncertainties have been largely relieved by ex-
tensive comparison between calculated and observed grain boundary structures
[2,7].

Two important fundamental insights have arisen from calculations of the
structure and energies of grain boundaries in metals. Firstly, it has been shown that
the structure of grain boundaries can be described as composed of several structural
(or polyhedral) units, which are repeated in a particular sequence along the bound-
ary, depending on the type of boundary and angle of misorientation. This result is
appealing because of its conceptual simplicity and because it relates to certain prop-
erties of boundaries such as nearest-neighbor bonding, segregation and diffusion.
Secondly, it has been shown that the grain boundary energy is directly correlated
with the volume expansion of the boundary per unit area and that this feature relates
to the nearest-neighbor hard-sphere character of the atoms. These studies have also
elucidated the reason why the CSL model does not accurately predict the energies
of grain boundaries except in special orientations. Each of these subjects is exam-
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ined in greater detail below, because they provide an atomistic picture that relates
the structure of grain boundaries to their energy and also to their segregation ten-
dency, which is discussed in the next section.

Structural (Polyhedral) Unit Model An example of the structural unit model
is shown in Figure 13.27 for a series of symmetrical [001] tilt grain boundary struc-
tures calculated using a pair potential appropriate for f.c.c. copper [61]. These tilt
boundaries are seen to be composed of various mixtures of the basic structural units
labeled B and A in Figures 13.27b and e, respectively. Boundaries composed entire-
ly of a single structural unit (such as Figs. 13.27b and e) are special boundaries. Ex-
2mination of Figure 13.27c shows that each A unit in the 3 = 17 boundary corre-
sponds to the termination of two symmetrical (120) planes. Hence, each A unit in
the boundary represents a dislocation with b = 1/5[120]. This is a DSC lattice vector
of the 3 = 5 coincidence lattice shown in Figure 13.27b. Thus, the % = 17 grain
boundary can be considered as a % = 5 boundary with A units interspersed between
every two B units. This agrees with the picture of DSC dislocations accommodating
additional misfit between CSL orientations developed in Section 13.2.3, but now
displayed in terms of the A and B structural units derived from atomistic calcula-
tions of grain boundary structure. The A units are elements of a 90° boundary in the
undisturbed lattice in Figure 13.27e, for which X = 1 and the unit cells of the DSC
and the crystal lattice are identical. When the B units occur as a minority compo-
nent among the A units in the %, = 37 boundary in Figure 13.27d, they mark the ter-
mination of two (110) planes, or an ordinary lattice dislocation with b = 1/2[110] in
each crystal.

The picture that emerges from the structural unit model [61-63] is that the
range of all possible misorientations between two grains can be viewed as divided
into sectors, each delimited by two special boundaries, such as % = 5 (B units) and
2 =1 (A units) above. Within each sector, the intermediate boundaries consist of
structural units taken from the delimiting special ones, arranged in an ordered se-
quence and in proportions given by a linear rule of mixtures (as in Figs. 13.27¢ and
d). The stress fields surrounding the relaxed boundaries in Figures 13.27¢ and d
agree with the presence of primary and secondary dislocations and, therefore, are
equivalent to the previous dislocation description of grain boundary structure [64].
It is important to note that the structural units formed in the relaxed grain bound-
aries in Figure 13.27b can be identified in a distorted shape in the unrelaxed bound-
ary structure shown in Figure 13.27a.

Another interesting feature of the structural unit model is that the various
structural units formed in relaxed grain boundaries correspond to the same type of
polyhedra that are the basic units of the liquid structure [65,66], shown previously
in Figure 8.3, and also found in hard-sphere models of grain boundary structure
[67,68]. An example of this is shown in Figure 13.28, where an octahedron and
Archimedian antiprism are outlined in the structure of a X = 13 (001) twist grain
boundary in f.c.c. silver. Such data indicate that the nearest- and next-nearest-neigh-
bor environment at grain boundaries in solids is similar to that of liquids and, there-
fore, that we might think of segregation to such boundaries in terms of the equilibri-
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Figure 13.28. Structure of a = = 13 (001) twist boundary in silver determined from diffraction
=«periments and atomistic modeling. From [69].

=m partition ratio k,, discussed previously with reference to Figure 6.11. In addi-
=on, the polyhedra formed in liquids tend to maximize nearest-neighbor coordina-
son, and, as we will see in the following section, this has an important effect on the

zrain boundary energy.

Structure-Energy Correlation The results presented in this section are based
on a recent review by Wolf and Merkle [7], who have performed an extensive com-
sarison between atomistic modeling and HRTEM observation of grain boundary
structure. In this section, we emphasize only those aspects of their results that help
w0 provide a nearest-neighbor broken-bond picture of grain boundaries, similar to
our previous analyses of solid—vapor and solid-liquid interfaces, and also to estab-
lish a relationship with the dislocation and structural unit models of grain boundary
structure discussed previously. Many of the data compare results obtained from
stomistic calculations using both many-body embedded-atom-method (EAM) po-
sentials for gold and the familiar Lennard-Jones (LJ) pair potential for copper. We
show only the results for these f.c.c. metals, but Wolf and Merkle [7] show a similar
series of data for b.c.c. metals.

Figure 13.29 shows the grain boundary energy <yg as a function of angle of
misorientation s (using the notation of Eq. 13.7) for <110> symmetrical tilt grain
soundaries (STGBs) in f.c.c. gold and copper. Note that both metals give qualita-
tively similar results and that the energies of copper are generally higher than those
of gold, which we expect based on the relative strengths of the atomic bonds in the
wwo metals (compare with the average surface energies in Table 3.3 for example).
Als0 note that these data are similar to those shown previously for aluminum in Fig-
ures 13.8¢c and d. All of these metals display deep cusps when the low-index (111),
(100) and (110) planes are parallel across the boundary, as indicated by the symmet-
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Figure 13.29. The energies of symmetric <110> tilt grain boundaries in copper and goic == =
function of angle of misorientation. From [7].

rical tilt grain boundary planes (hkl) at the top of the figure. Hence, these data ma-
cate that there is a correlation between the atomic density of the planes comprisme
the grain boundary and the energy of the boundary. This correlation has the szme
trend as the solid—vapor interfaces in Figure 3.16, although there are clearly add-
tional cusps present in the grain boundary data [e.g., at (113)] which are absem: =
the case of solid—vapor interfaces. An alternate way of expressing this correlation =
to note that there is an inverse relationship between the interplanar spacing of @
planes parallel to the grain boundary and the grain boundary energy, with widsh

Table 13.3. Intrinsic stacking fault and twin boundary energies in various

f.c.c. metals

Yisf Yis#/dT Yt
Metal (mJ/m?) (mJ/m2-°C) (mJ/m?)
Al 166 -0.04 a5
Ni 128 -0.04 43
Cu 78 -0.04 24
Ag 22 -0.006 8
Au 45 -0.02 15
Pt 322 -0.08 161

Source: From [24] and [39].
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spaced low-index planes such as (111) and (100) generally displaying lower grain
boundary energies.

This relationship between the energy of symmetrical tilt grain boundaries and
surfaces is further illustrated in Figure 13.30, where the results for symmetrical tilt
grain boundaries and random grain boundaries (RGBs) are compared with the sur-
face energy (expressed as 2ySY, the energy necessary to separate a grain boundary
into two surfaces as in an ideal cleavage experiment) of gold. Again we note a cor-
relation between the deep cusps associated with low-index planes, but the absence
of other cusps in the case of surfaces, suggesting that the behavior of grain bound-
aries has some similarities but is more complicated than that of surfaces. In these
experiments, an RGB is defined such that all interactions across the grain boundary
are assumed to be random with the constraint that, as in actual boundaries, the
atoms are assumed to lie in well-defined planes parallel to the boundary. The simi-
larity of the RGB model with the symmetrical tilt model again indicates a correla-
tion between the interplanar spacing parallel to the boundary and the grain bound-
ary energy, particularly for the three most densely packed planes. Note the large
reduction in energy that occurs when the two surfaces are joined to form a random
grain boundary, due to the elimination of broken bonds at the interface.

Figure 13.31 shows the energies vy,, of symmetrical twist boundaries versus
twist angle 6 for LJ copper for the (111), (001), (011) and (113) grain boundary

o= o~ o~ — — = — —
o - - N (3] un o
b o ™ N L o - - - o
» ™ N - - - - -
S —r e S St ~— ~
2000
ﬁ SV
1600 - y

<110> Au(EAM)

Energy [mJ/m?)

0 ¢——v——+—+—1—+—1+—v1r—+—"1"r—0
0 30 60 90 120 150 180

T11t Angle ¢
Figure 13.30. Comparison of the energies of RGBs and STGBs with those of the free sur-

faces for <110> gold. Note that the energy of two free surfaces 2ySV is plotted and that this
corresponds to the RGB limit for a grain boundary expansion (Eq. 13.9) of AV, — From [7].
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Figure 13.31. Energies of symmetrical twist boundaries versus twist angle for the four dens-
est planes of f.c.c. copper obtained with an LJ potential. The only significant cusps occur =
the beginning and endpoints of the misorientation range where there are small planar unit cefs
in the boundary. From [7].

planes indicated in the figure. In these figures, 8 = 180°/n, where n indicates a pos-
sible rotation symmetry for the planar unit cell of the grain boundary. These datz
clearly show that the lowest grain boundary energies are associated with the mos:
densely packed planes of the crystal and that the curves are rather featureless over
large range of twist angle, in comparison to the tilt boundaries in Figure 13.29. The
only significant cusps at the beginning and endpoints of the twist misorientation
range indicate that, in the case of twist boundaries, small planar unit-cell areas =
the boundary correspond to low energies. The lack of variation in energy with twist
angle except at the endpoints and the strong dependence on the interplanar spacing
indicates that it is the short-range repulsion of the atoms and the volume expansion
at the interface that dominate the grain boundary energy. Thus, the formation of
twist grain boundaries on planes that are widely spaced and contain a high density
of atoms with small planar unit-cells leads to lower-energy grain boundary struc-
tures.

Wolf and Merkle [7,70] also examined the correlation between the grain
boundary energy and the volume expansion per unit area at the grain boundary
AVj/a for symmetrical and asymmetrical tilt and twist grain boundaries in copper
and gold, and their results are compiled in Figure 13.32. These data indicate a near-
ly linear relationship between the volume expansion per unit area of grain boundary
and the grain boundary energy. This general relationship appears to exist for 2l
types of grain boundaries. Figure 13.33 shows a second important correlation o5-
tained from this study. This figure shows that there is an approximately linear rela-
tionship between the grain boundary energy *y,; and the number of nearest-neighber
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Figure 13.32. Correlation between the grain boundary energy and volume expansion per unit
area (normalized by the lattice parameter) for symmetrical and asymmetrical tilt and twist grain
soundaries in f.c.c. metals using an (a) LJ copper potential and (b) EAM gold potential. From
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broken bonds per unit grain boundary area ny Nyguy- These data were again ob-
sained from the atomistic calculations and the effects of second-nearest- and higher-
neighbor contributions were estimated to be typically less than 10% to 20% of the
nearest-neighbor contribution for the L potential and even smaller for the EAM po-
tential. Although the details of the interfacial structure are not accounted for in this
correlation, the relationship between the number of nearest-neighbor broken bonds
and the grain boundary energy is clearly evident, and it establishes a direct link with
all of our previous treatments of interfacial structure based on broken-bond models.
Further comparison between Figures 13.32 and 13.33 shows that there is a correla-
tion between the volume expansion at the grain boundary and the number of near-
est-neighbor broken bonds per unit area for the two f.c.c. potentials. The physical
basis for this correlation is that, as the number of broken bonds (or roughness of the
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Figure 13.33. Grain boundary energy versus number of nearest-neighbor broken bonds per
unit area for f.c.c. metals. The related surface energies are also shown for comparison. From

7.

interface) increases, the ability of the two surfaces comprising the grain boundary o
obtain good matching decreases, leading to a volume expansion at the grain bound-
ary (Eq. 13.9) with a corresponding increase in the grain boundary energy. The in-
crease in grain boundary energy from the volume expansion is equivalent to the sur-
face stress described in Part II (Eq. 3.11).

We have examined the structure and properties of grain boundaries from 2
number of different viewpoints in Section 13.2, and it is worth summarizing soms
of the more important conclusions and relationships that arise from these treat-
ments. First, it is important to remember that regardless of whether the Read-Shock-
ley, CSL/DSC or structural unit model is used to interpret the structure of grain
boundaries, they all model the boundary as being composed of areas of good and
poor matching, with the poor matching comprised of dislocations. Areas of good
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matching are generally associated with low energy, whereas those with poorer
matching generally have higher energy. This relationship is not always simple, but it
s quantifiable in terms of the dislocation models and atomistic calculations pre-
sented. The atomistic models lead back to the idea of arrangements of structural
umits in a grain boundary, which possess certain numbers of nearest-neighbor bro-
en bonds. These correlate with the energy, so that ultimately, all of these approach-
=< have a similar physical origin associated with the stretching and breaking of
ztomic bonds, as presented in Section 1.2.

The dislocation cores represent groups of atoms with different atomic
arrangements than in the bulk. When the dislocations are far apart, both the core
sructure and the associated elastic strain fields contribute to the total energy of the
soundary. The core energy may be a small part of the total energy when the disloca-
sions are far apart, and then the Read-Shockley model, which accounts for the loga-
sthmic behavior of the elastic strain fields, is able to accurately characterize the
soundary structure and energy. When the dislocation cores overlap, the elastic strain
fields become a negligible part of the energy, and the local bonding arrangements at
e cores constitute most of the structure and energy. In this case, the other models
of high-angle grain boundary structure such as the CSL/DSC, structural unit or
stomistic models become more appropriate. Any of these models still has regions of
z0od and poor matching and involves various arrangements of atoms with nearest-
neighbor broken bonds, which then determine the boundary energy, so they are con-
ceptually similar. A major insight into all these models is that it is possible to con-
sider quantifying the structure, defects and energies of homophase interfaces, in this
case grain boundaries, in terms of nearest-neighbor atomic bonding, although the
situation is clearly more complex when the interface is composed of two crystalline
solids instead of only one.

13.2.5. Stacking Faults and Twin Boundaries

The atomic structure of stacking faults and twin boundaries can be readily envi-
sioned in f.c.c. crystals, which consist of an ABCABC . .. stacking of close-packed
{111} crystal planes. Figure 13.34 shows schematically the distinction between in-
wrinsic (i) and extrinsic () stacking faults and shows for comparison the relationship
with twins in f.c.c. metals and alloys. If a single (111) plane is removed from the
usual stacking of (111) planes in an fc.c. crystal in Figure 13.34a, an intrinsic
stacking fault with an ABCBC . .. stacking sequence occurs, as illustrated in Fig-
are 13.34b. Conversely, if an extra (111) plane of atoms is inserted into the crystal,
an extrinsic stacking fault with an ABCBABC . .. stacking sequence results, which
is also shown in Figure 13.34b. An alternate description of the extrinsic fault is that
it arises from the superposition of two intrinsic faults, as illustrated in Figure
13.34c. If intrinsic faults occur on every (111) plane, then thin twins form within
the crystal, as illustrated in Figures 13.34d and e. On this basis, an extrinsic fault is
simply a one-layer twin. As we have seen throughout this book, the interfacial ener-
gy is largely governed by the nearest-neighbor bonding between atoms. Based on
this, the energies of intrinsic and extrinsic stacking faults are expected to be similar
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Figure 13.34. Idealized view of stacking faults and their development from perfect crystal in
(a) to an n-layer twin in (e) in the close-packed f.c.c. structure. The viewing direction is along
[110]. From [24].

and the twin boundary energy is expected to be only about half of the intrinsic
stacking-fault energy based on the number of nearest-neighbor bonds that are in the
wrong stacking sequence. In the case of two twinned crystals, if a (111) interface
plane is defined and the top half of the crystal is rotated 180° about the interface
normal, a coherent twin boundary with an ABCACBA . . . stacking like that in Fig-
ure 13.34e results. This is a special type of £ = 3 grain boundary, and an example of
this was shown in Figure 12.1.

The stacking fault energies v of metals and alloys can be determined direct-
ly from measurements on extended dislocation nodes or from the separation of par-
tial dislocations in the TEM [39,71,72] as well as by several other methods [24].
Values for the intrinsic stacking fault energies (;sr) of several f.c.c. metals are given
in Table 13.3. Values for the temperature coefficients of the stacking fault energies
are also given in Table 13.3. These are seen to be negative in accordance with Eq.
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(3.14) and have relatively small values, which is reasonable physically given the low
entropy associated with stacking faults.

Unlike stacking fault energies, measurement of twin boundary energies (y,)
are indirect and depend on a knowledge of the average surface or grain boundary
energies and substitution into ratios with these quantities. Hence, there is much
greater uncertainty in these measurements. Values for the twin boundary energies in
fc.c. metals are also shown in Table 13.3, and these are observed to be approxi-
mately one-third to one-half of the corresponding stacking fault energies. Only a
few estimates of dy,/dT are available, and they are similar to the values for y;/dT
listed in Table 13.3.

Hirth and Lothe [39] have proposed on geometrical grounds that the stacking
fault and coherent twin-boundary energies at 0 K can be represented by the number
of pairs of atom planes of separation n that are not in the proper f.c.c. stacking se-
quence, multiplied by the distortional energy &, per pair. As indicated when consid-
ering the planar stacking sequences of the f.c.c. faults and twin boundaries above,
there should be a relationship between the intrinsic and extrinsic stacking fault ener-
gies and the twin-boundary energy, such that ;s = 2,. The coherent twin bound-
ary has one pair of second-nearest-neighbor planes (n = 2) out of sequence, two
third-nearest-neighbor planes (n = 3), one fourth-nearest-neighbor plane (n = 4),
and so on. Based on this nearest-neighbor plane consideration and the relationships
of the various fault boundaries, the twin boundary and the intrinsic and extrinsic
stacking fault energies can be expressed as

Wi = 2 [2n¢3n + n(¢3n‘l + ¢3n+l)]
=y +203+dst ..o, (13.31)

VYest = 2 [2d3p1 + (Bnt1)ds, + 3ndsnn]
=2b, +4d;+3bst+ ..., (13.32)

Yist = 2 [(3” - 1)¢3n——l + 3"¢3n]
=2¢2+3¢3+0¢4+ sm e (13.33)

Yoep = 2 [Wen-2 + Vo3 + Vena)l
=¢2+¢3+¢4+.... (13.34)

Also listed is “yycp the fault energy per close-packed plane of an h.c.p. crystal,
which is regarded as a completely faulted f.c.c. crystal due to an intrinsic stacking
fault on every other f.c.c. plane. Thus, this value represents the f.c.c. to h.c.p. trans-
formation energy per layer and corresponds to calculation of the interphase bound-
ary energy of the f.c.c.—h.c.p. interface shown in Figure 13.4.

The energy ¢; of a jth nearest-neighbor atom pair in an f.c.c. crystal is associ-

ated with its atomic separation r;. Hirth and Lothe [39] have shown that the associ-
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ated shear displacements for the faults above can be represented by r; — r;’ and

r;— r;'’, where the sheared vector separations r; and '’ are given by the original
separations 7; plus the shear displacement vectors of the type 1/6<112>. The pair

energies ¢, can be expressed in terms of the bond energies ¢; (€, in Eq. 1.4) so that,
including bonds out to the eleventh nearest neighbors, pair energies can be given in
terms of the bond energies as follows:

b, =€j —3€;+6€;' —3€,— bes + 6e; — 6¢€s,
b3 =—€6 + 3¢,
b, =0 (n>3).
Substituting these into Eqgs. (13.31) through (13.34), then yields
Y= €5 —3€; + 6€;" —3€, —6€s + 6€; — 266 + 6€g + 6€s, (13.35)
Vest = 2€5 — 6€3 + 12€3" — 6€4— 12€5 + 12¢; — 4eg + 12¢4 + 12¢5, (13.36)
Yist = 2€5 — 6€; + 12€3" — 6€, — 12€5 + 12¢, — 3€ + 9€g + 1265, (13.37)
Yocp = €3 —3€3 F+ 6€}’ —3€,— 6es + 6€; — €5+ 3€6 + 6¢s, (13.38)

where the fault energies are expressed as the energy per atomic area in the fault
From these relations, it is observed that

Yist = Yest = 2'Yt (1339)
and the f.c.c.—h.c.p. interphase boundary energy is found to be the same as the co-
herent twin boundary energy. These results agree reasonably well with recent densi-
ty-functional theory calculations of Yisp, Yests a0d 7, in aluminum [73] and the values
shown in Table 13.3.

13.2.6. Roughening, Phase Transformations and Melting

Grain boundaries display phenomena such as roughening (and faceting) and phase
transformations as a function of temperature and alloying just like solid—vapor in-
terfaces. Unfortunately, because of the additional complexities of grain boundaries,
relatively simple analytical or atomistic treatments of these phenomena are not
available. However, we can rationalize these phenomena using the same sort of
nearest-neighbor bonding arguments as for solid—vapor interfaces. In this section,
we mainly present data that demonstrate these phenomena for the case of ho-
mophase interfaces and rationalize them using qualitative, intuitive arguments.
Cahn [74] has presented a comprehensive analysis of the thermodynamics of
grain boundary phases and the possible types of transformations that may occur be-
tween them. One possible type of phase transformation is a faceting transformation
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i which an initially flat (single phase) grain boundary may transform to a faceted
structure consisting of two or more facet types (phases) that coexist along their lines
of intersection. Figure 13.35 shows an example of this type of roughening or
faceting phase transformation in a sample of pure aluminum heated in situ in the
TEM [75]. The boundary under observation is an asymmetric <111> tilt boundary
with initial {112},/{112}, facets as illustrated in Figure 13.36a. Upon heating the

203 Ka0.31Tm a

411 Kel.47Tm

Figure 13.35. Reversible roughening-faceting transformation of an initially faceted % = 3
asymmetric <111> tilt boundary containing {112},/{112}, facets in aluminum as a function of
step-wise heating (a-d) and subsequent cooling (d-g). Time at each temperature = 30 min.
Reprinted with permission from [75] by Elsevier Science Ltd., Oxford, England.
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initially faceted sample to 0.54T,, in Figure 13.35d, the facets become almost flat
and parallel to {110}. Upon cooling, the process reversed itself and a sharply
faceted structure was regained at room temperature in Figure 13.35g. At each tem-
perature, the boundary was observed to rapidly adjust to the temperature change
and then maintain this configuration during the isothermal hold. This is illustrated
in Figure 13.36b, which shows the amplitude of the {112},/{112}, facets on the = =
3 grain boundary as a function of time and temperature. These data clearly demon-
strate that grain boundary roughening occurs with increasing temperature, just 2s
for the solid surfaces shown in Figures 4.11 and 4.12 for example. The roughening
temperature is slightly more than half of the melting temperature in Figure 13.3&.
which is similar to that of solid surfaces. Although the mechanism of roughening
was not determined in Figure 13.36, it is likely that it is due to the formation of
atomic ledges and kinks in the grain boundary. Another interesting example of 2
phase transformation in [001] twist boundaries in gold due to segregation of iron %
the interface has been reported [76], but it is not discussed here.

The phenomenon of grain boundary melting has been examined both theor=s-
ically and experimentally by several groups [77-81]. Interpretations of the da=
vary, but it appears that there is not strong evidence for grain boundary premelting
at temperatures much below the melting temperature of the bulk solid in any of &=
metals, ionic or semiconducting materials examined. What is observed in the atom-
istic simulations is that melting tends to nucleate heterogeneously at grain bound-
aries in crystals at temperatures approaching the melting point (0.987,, for exam-
ple) and then spread into the remaining solid as the temperature is raised slightis
An example of this is shown in Figure 13.37 for a % = 5 (310) tilt grain boundary =
a molecular dynamics study of sodium chloride. The temperatures in Figure 13.37
correspond to 0.967,, for 1029 K, 0.98T,, for 1054 K and 0.9937,,, for 1065 K. Th=
whole system was liquid at 1072 K (1.0037y,). There was no superheating in e
simulation and the grain boundary was found to melt at temperatures only slights
below the bulk melting temperature and move continuously and rapidly into e
bulk crystal. Thus, it appears that melting is able to initiate at grain boundaries be-
cause they are defects, but the onset of melting is very near the equilibrium meltng
temperature. This contrasts with surfaces, where atoms do not feel any restormg
forces on one side and are thus able to melt at temperatures well below T, Tms
makes grain boundaries considerably more resistant to melting according to e
simple Lindemann criterion for melting discussed in Section 4.5.2. It has beex
shown that grain boundary melting is orientation dependent and therefore that soms
boundaries may melt at temperatures lower than those shown in Figure 13.37, bar
the results shown in Figure 13.37 are typical of most of the investigations to date.

J00
200

13.2.7. TLK Model of Grain Boundary Motion

A model for the migration rate of grain boundaries based on a TLK mechanism has
been proposed [82,83]. This model has many features in common with the TLE
models for solid—vapor and solid-liquid interfaces discussed in Parts II and III, an¢
with a model for heterophase interfaces presented subsequently in Section 14.7. Uz~
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Figure 13.37. (a—) Trajectory plots of instantaneous ion positions at three different temper=-
tures for a % = 5 (310) tilt grain boundary in sodium chloride. From [78] copyright Taylor &
Francis Ltd.

fortunately, there are few direct experimental data other than the original work of

Gleiter [82,83] available for comparison with the model. Because there is a signifi-
cant amount of experimental data on the atomistics and kinetics of motion of he:-
erophase interfaces by a TLK mechanism, we provide only a brief description of the
grain boundary model here. This model represents only one approach to the subjess
of grain boundary migration and a number of others are available [84-86]. As w=
have seen in the previous sections, the structure of grain boundaries is quite compi:-
cated and so is their migration behavior.

Gleiter’s TLK model is based on the observation of motion of grain boundars
ledges during in situ heating in the TEM. These ledges are evident from the dis-
placement of the thickness fringes in the grain boundary where they cross a ledgz.
as shown in the bright-field TEM image in Figure 13.38. It is possible to calculzs=
the heights of the ledges from the displacements [83], and they were found to vars
from approximate 0.3 to 2.5 nm with most near the bottom of the range. Thess
ledges were found to be generated primarily by spiral sources, similar to screw dis-
locations on solid surfaces, and at grain boundary intersections.

Based on the orientation relationships between the grains and the geometry o
the grain boundaries in the TEM observations, a model of a migrating grain bouné-
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Figure 13.38. A grain boundary in aluminum—-copper alloy containing several ledges (arrows),
2s evident from the displacement of the thickness fringes. Reprinted with permission from [83]
oy Elsevier Science Ltd., Oxford, England.

ary was constructed and is shown in Figure 13.3%a. In this model, the terraces on
opposite sides of the grain boundary were assumed to consist of the close-packed
{111} planes that had the smallest inclination to the grain boundary. The spacing
between the ledges in these planes was assumed to vary with the angle 6 from the
close-packed {111} planes as illustrated in Figure 13.39b, just as for the solid-va-
por interface in Figure 4.2. By analogy with the case of solid surfaces, it was sug-
zested that migration of the boundary occurred as follows:

. Dissociation of atoms from kinks onto ledges

Diffusion of the atoms along the ledges

. Dissociation from the ledges onto the {111} terraces

. Diffusion on the terraces and desorption into the grain boundary

. Condensation from the grain boundary onto the terrace of the opposite grain
. The reverse process on the surface of the growing grain.

N AW —

The concept of desorption into the grain boundary, as though it were a thin layer of
vapor phase between the two grains, is not physically realistic given the atomic
structure of grain boundaries. However, the TLK aspect of the model is probably
quite reasonable on an atomic level. Based on this picture, Gleiter derived a com-
plete set of kinetic equations for grain boundary motion [82]. His results predict a
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Figure 13.39. (a) Model of a migrating grain boundary. GS is the surface of both grains (G)
with a ledge structure. The interspace between both grains forms the grain boundary (GB).
which is assumed to be on the order of the ledge height. (b) Formation of large grain boundary
ledges by the coagulation of monatomic ledges. Reprinted with permission from [83] by Else-
vier Science Ltd., Oxford, England.

strong dependence of the migration rate on the orientation of the grains (i.e., the
{111} planes) relative to the boundary plane. A minimum rate occurs when the
boundary is parallel to a set of {111} planes in one grain, and a maximum occurs
when the boundary is steeply inclined to {111} planes in both grains. The model
also predicts an increase in migration rate with temperature from both a higher dif-
fusivity and a higher kink density on the ledges. A number of experimental data
showing that the grain boundary migration rate is orientation dependent are avail-
able [84,86-88], but so far none of these data have been correlated with the grain
boundary structure and TLK model just described. Another possible mechanism of
grain boundary motion is by the transformation of structural units at the boundary,
but this mechanism has not been thoroughly developed.
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13.2.8. Segregation to Grain Boundaries

The thermodynamics of equilibrium grain boundary segregation in binary alloys are
very similar to those of surfaces discussed in Chapter 6. Prediction of segregation to
grain boundaries can be described using the Langmuir-McLean relation in Eq.
(6.24) [89]. For example, Figure 13.40 shows that the Langmuir-McLean relation is
obeyed for the segregation of 8 to 12 ppm of oxygen to grain boundaries in molyb-
denum over a wide temperature range. The basic features of equilibrium grain
boundary segregation are evident in this plot (i.e., segregation increases as the bulk
solute content increases and as the temperature decreases).

Seah and Hondros [90] have used a solid-state analogue of gas adsorption
theory to write a predictive equation for segregation to grain boundaries,

ol

x X;  -AG'
1-%}1,: Bitexp = (13.40)
g

where X is the fraction of the grain boundary monolayer covered with segregant,
Xz is the bulk mole fraction of solute B, X5** is the bulk solid solubility and

: Temperature °C
2000 1800 1600
0ef ! L ' kS ' !
‘ 10.3 =
»f both grains (G) o ' )
n boundary (GB). }
je grain boundary =]
from [83] by Else- E e T 1
| o o
'
‘5_" 10.0 |- -
x
grains (i.e., the
ccurs when the ‘ 531 7
aximum occurs
ins. The model ] 9.8
#h a higher dif. | 4 i
perimental data
ndent are avail- ‘ iy e e F . ;
: : ‘ : . . 49 51 53 55 57
i with the‘ grain 104 k™)
: mechanism of T
it the boundary, Figure 13.40. Langmuir-McLean plot for oxygen grain boundary segregation in molybdenum

measured by Auger electron spectroscopy: From [89].



366 STRUCTURE AND ENERGY OF HOMOPHASE INTERFACES
AG' = Ang—' AGB, (13.41)

where AGy, is the free energy for grain boundary segregation and AGp is the free
energy of solution of the alloying element in the bulk. Thus, AG’ represents the free
energy difference between solute that is in solution in the alloy versus solute that is
segregated to the grain boundary. There is a tendency for segregation when AGg, >
AGg, so that AG' is negative. As with surfaces, it is useful to define a parameter
called the grain boundary enrichment ratio By, Which represents the ratio Xgy/Xp in
the dilute limit. For grain boundaries, this quantity is given as

1 -AG
ng— X5

exp (13.42)

RT

A plot of By, versus the atomic solid solubility X5 is shown in Figure 13.41 for 2
number of experimental data at various temperatures. As for the case of surfaces
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Figure 13.41. Correlation of measured grain-boundary enrichment ratios with the atomic so-
id solubility. From [89,90].
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shown in Figure 6.10, there is good overall agreement between the grain boundary
enrichment ratio and the solid solubility, so that the grain boundary enrichment for
systems in which experimental data are not available can be estimated from the
solvus line in the corresponding binary phase diagram and Figure 13.41.

Based on the data in Figure 13.41, it was determined that, although AGj val-
ues typically range from zero to —80 kJ/mol, AG' has a mean value of =10 £ 6

kJ/mol, so that
AGy, =AGp-(10£6) kJ/mol. (13.43)

This treatment is valid only when the bulk molar solute fraction is less than the sol-
id solubility. If excess solute content is also present so that a second phase appears,
the solute content is limited to the solid solubility. The situation becomes more
complicated in ternary and higher order alloys; these are discussed elsewhere [89,
91].

Although the same physical phenomena that are included in the derivations of
Egs. (6.25) and (6.26) for surfaces could be used to develop expressions for the
quantity AGy, in grain boundary segregation, the problem is much more complicat-
ed because of the variety of grain boundary structures that are possible as a function
of the five macroscopic and three microscopic degrees of freedom of a boundary
(Egs. 13.6 and 13.9). There are a number of experimental data which demonstrate
that segregation to grain boundaries is orientation dependent (Fig. 13.42, for exam-
ple) and indicate that high-angle boundaries may exhibit more segregation than
low-angle or special grain boundaries, but these relationships are only qualitative
and not fully understood [92,93]. As a result, there is no quantitative model for
grain boundary segregation that can account for the role of boundary structure and
solute properties on segregation. Recent atomistic simulations have been quite use-
ful in elucidating some of the factors involved in grain boundary segregation; these
are discussed further.
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Figure 13.42. Grain boundary segregation of bismuth in copper as a function of tilt angle for
copper <100> tilt bicrystals determined by Auger electron spectroscopy. From [92,93].
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In general, alloys that display surface segregation also display grain boundary
segregation, but often to a lesser extent. This is illustrated for the case of tin in iron
in Figure 13.43. This behavior can be rationalized by remembering that a grain
boundary generally contains more free volume and some number of broken bonds
(refer to Figs. 13.32 and 13.33) just like a free surface, although to a lesser extent
than a surface. By analogy with surfaces, it seems reasonable to expect that the
equilibrium partition ratio k, (Eq. 6.27) might be a good indicator of grain boundary
segregation, particularly given the similarity of the bonding environments in grain
boundary structural units and the polyhedral units in 2 DRP liquid, but this relation-
ship has not been tested.

Qualitatively, it has been argued that once a segregating atom reaches a grain
boundary, it remains there because of the favorable bonding environment provided
by the boundary [95]. In many systems, the segregating element is a nonmetal.
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Figure 13.43. Predicted temperature dependence of the free energies of surface and gram
boundary segregation of tin in iron as a function of temperature, with experimental datz =
550°C and 1420°C. From [89,94] copyright Taylor & Francis Ltd.
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which tends to form stoichiometric compounds with the metal. The structural units
that make up such compounds often bear a close resemblance to the structural units
that are commonly found in grain boundaries (Figs. 13.27 and 13.28). Hence, a seg-
regating species may find an atomic geometry at the grain boundary that is much
more compatible with the type of bonding environment that it would prefer to form
with the metal and this causes it to stay in the beundary. The boundary would then
be decorated with such segregated units. Some evidence for this explanation comes
from atomistic calculations of grain boundary segregation, which clearly indicate
site selectivity of the segregating species. For example, Sutton and Vitek [95] stud-
ied the segregation behavior of bismuth (a strong segregant and embrittler) and of
silver (a weak segregant) in copper and gold to symmetric % = 5 (210) and 2 = 17
(530)/[001] tilt boundaries (refer to Fig. 13.27) by atomistic calculation. The ener-
gies of segregation of the elements to various sites in the boundary were found to
vary widely, as illustrated in Figure 13.44. For a given structural unit, the segrega-
tion energy also varied considerably with its surroundings in the boundary (i.e., the
boundary type). The large bismuth atoms generally went into those sites that were
surrounded by a tensile stress field in the unsegregated boundary. In terms of a
hard-sphere model, it segregated to the most spacious site. Segregation of bismuth
to copper was also accompanied by an expansion perpendicular to the boundary,
which can be interpreted as a weakening of the boundary cohesion.

Several recent Monte Carlo calculations of segregation to pure <100> twist
boundaries in nickel-copper and platinum—gold alloys using EAM potentials have
revealed a detailed picture of segregation in these alloys [96-98]. Pure twist grain
boundaries are particularly convenient to study because the grain boundary con-
tains an array of identical screw dislocations as a function of tilt angle up to ap-

-0.36ev
+2.16eV

+0.45eV

-018 ev
+230eV.

Figure 13.44. Segregation enthalpies (in eV/atom) for bismuth atoms in copper tilt boundaries
when (a) £ =5 and (b) 2 = 17. From [45,95].
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Figure 13.45. (a) Atomic positions projected on the boundary plane for a = = 61 twist bounc-
ary in a nickel-10 at.% copper alloy. The first two atomic layers on either side of the boundary
are shown. The open circles are nickel atoms and the filled circles are copper. The screw dis-
location network is located in the regions of poor matching between the crystals (compar=
with Figure 13.10). (b-d) Contour plots of the copper concentration as a function of position =
the plane of the first (b), second (c) and third (d) atomic layers of the boundary. The plots car-
respond to the central unit cell outlined in (a). The numbers indicate the compositions at ==~
tremums in at.% copper and the contour spacing is 4.4 at.%. From [98].
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sroximately 35° (e.g., refer to Figs. 13.10 and 13.12). In these studies, the con-
-entrations of the segregating species were found to increase linearly with twist
angle until saturation occurred at the boundaries at relatively high angles (~ 35°).
This behavior was related directly to the dislocation density in the twist bound-
aries rather than to the particular value of %. It is a significant finding because it
provides a simple explanation for the segregation behavior of twist boundaries. In
addition, the segregating species were found to lie within two or three planes on
sither side of the interfaces and to depend on the strain fields of the screw dislo-
cations, as illustrated for the nickel-copper system in Figure 13.45. The amount of
segregant also increased in proportion to AG’ in Eq. (13.41) and decreased with
increasing temperature in the studies, as expected from thermodynamics. An addi-
rional interesting feature in these studies, was that, in the platinum—gold alloy, the
solute was highest in the dislocation cores, whereas in the nickel—copper alloy, the
~everse trend was found. In both alloy systems, the positive heats of solution
(Table 2.1) indicate a tendency for the elements to separate and thus, to segregate
to the boundary. In the platinum-gold alloy, it was found that gold segregated to
the dislocation cores, where the atoms could relieve the high hydrostatic tensile
and shear stresses associated with the dislocations. In contrast, in the nickel—cop-
per alloy, a volume expansion at the boundary (AV;) left the regions of good
matching in tension, which could be relieved by segregation of the elastically soft-
er copper atoms to these regions in between the dislocation cores. This effect is il-
lustrated in Figure 13.45, where the copper concentration in the second and third
planes away from the boundary (Figs. 13.45¢ and d) is highest in the center and at
the corners, between the screw dislocation cores. These results point to the impor-
tance of the elastic properties of the solute and its interaction with the local grain
boundary structure in determining segregation behavior, as well as to the mixing
behavior of the elements. Comparison of Figures 13.32 and 13.33 with the segre-
gation behavior of the platinum-gold and nickel—copper alloys also indicates that
there may be a direct correlation between the volume expansion and number of
broken bonds at twist grain boundaries and the amount of segregant, but this rela-
tionship has not been examined. Clearly, more work needs to be done to quantify
the segregation behavior of grain boundaries, although the same basic trends as in
surface segregation are evident.
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PROBLEMS

13.1. Suppose the grains shown in Figure 13.1 were two different phases and the
grain boundary was thus an interphase boundary. Could an equation like Eq.
(13.1) be used to determine the interphase boundary energy? Why or why
not?

13.2. Thin sheets of pure copper and gold are heated separately in a vacuum to
form thermal grooves where the grain boundaries intersect the surface. Cal-
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culate the average groove angle formed at 1000°C. Describe how you could
experimentally determine whether your calculated value would be valid based
on the equilibrium of the grain boundaries.

. The figure below (from [99]) shows a series of grain boundaries intersecting
the surface of a thin wire of silver—40 at.% aluminum alloy, similar to the
geometry shown in Figure 13.1.

(a) Measure the dihedral angles for the three boundaries indicated by arrows
(b) What is the ratio yg/ySY for this alloy?

(c) Determine vy, when yS¥ = 2190 mJ/m? at 748 K.

. For a given value of 8, which has a lower energy: a grain boundary having

many dislocations with small Burgers vectors or one having fewer dislocz-
tions with larger Burgers vectors?

. Consider two parallel grain boundaries similar to Figure 13.3, where ome

grain has 8 = 8, and the other has 6 = 8,. Show that the two boundaries can r=-
duce their energy by combining to form a single boundary with 6 = 6, + &

. Consider a grain boundary in an f.c.c. crystal where the plane of the boundary

is (110) and the two grains have a small relative rotation 6 about the (1123
axis, which is common to the two grains. Show that the grain boundary = =
vertical row of extended edge dislocations.

. Two f.c.c. crystals with a lattice parameter a = 0.4 nm are rotated 0.5° abous

[112]. If the boundary is a symmetrical tilt boundary made up of edge disle-
cations:
(a) What is the boundary plane?
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how you could (b) What is the length of dislocation line per unit area of the boundary?

Fbe: valid basel (c) Calculate the angle at which the individual dislocations making up the
boundary become indistinguishable.

ies intersecting (d) Show that these dislocations are stable with respect to displacement of

similar to the any one of them on its slip plane.

. A simple cubic crystal contains a cube-shaped volume of material that has a
small difference in orientation from the surrounding crystal. The disoriented
cube has faces parallel to {100} planes and is rotated (relative to the rest of
the crystal) about the (001) axis. Draw the distribution of dislocations on the
faces of the cube.

ited by arrows.

. Figure 13.10 shows a relaxed pure twist boundary in a simple cubic crystal.
(a) What is the angle of misorientation 6?
(b) Sketch the O-lattice vectors x,(® and x,© on the figure.

(c) Find the components of the two O-lattice vectors x,© and x,(® if b, =
[1,0,01, b, = [0,1,0] and the rotation axis is [001]. Use the rotation angle
calculated in part (a).

13.10. We can write Frank’s formula for a rotation 6 about [001] as
bl = —9x2

b2=9x,
b3=0,

where b (b,, b,, b;) represents the discrete points of the dislocation network.
Show that this equation is identical to Eq. (13.22) for small 6.

Derive N, for a simple tilt boundary consisting of one set of edge disloca-

. tions.
idary having
wer disloca- Determine N, and N, for a simple twist boundary consisting of two sets of

orthogonal screw dislocations.

, where one (a) On the same graph plot (i) the grain boundary energy v, for a pure tilt
laries can re- {100} boundary (Eq. 13.3) and (ii) twice the surface energy Y%, (Eq.
=0, +0,. 3.18), as a function of 6 from 0° to 10° for pure gold.
b b (b) Explain any differences in the shapes and magnitudes of the two curves
ut the [ITZ‘] in terms of atomic bonding at the interfaces.

undary is a ‘ Specify the grain boundary in Figure 12.2 using the five DOF as in Eq.
(13.5) and according to the interface-plane scheme in Eq. (13.6).

10.5° about The drawing below shows a [110] projection of a coherent twin boundary in
edge dislo- a face-centered cubic crystal.

(a) Draw in the coincident site lattice (CSL).

(b) What is the value of 3 for this boundary?
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(c) Draw in the DSC lattice. ,
(d) What are the two shortest DSC lattice vectors?
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13.16. A twin boundary in the f.c.c. structure is shown in the four illustrations o= g J\P,
the next page (from [52]). Figure (a) shows a planar boundary, whereas lin- :V O
ear defects are present at the boundaries in (b) through (d). The CSL/DSC 2 —ei—lj
lattices are indicated in each figure and refer to Frank circuits, which can be &
used to determine the ledge and dislocation character of the linear defects =
the interface, as shown in the figures. The start and finish points of the ci=- . "5
cuits are indicated by S and F, respectively. Use these diagrams to determine
whether the ledges in (b) through (d) have pure ledge or Burgers vector .
character. Specify the associated ledge or Burgers vectors in each case. i -
13.17. (a) Make a sketch similar to Figure 13.34 showing an extrinsic stacking
fault in a metal or alloy. 1
(b) If this alloy forms an ordered L1, structure like Cu;Au, make a skeict 2 '—( -
of the f.c.c. unit cell and show a schematic of the extrinsic stacking fau® g ¢ 1
in this alloy. How does it compare with that in part (a)? § . -
(c) Suppose instead the alloy forms an L1, ordered structure like CuAu—L z :
Make a sketch of the f.c.c. unit cell and show a schematic of the extri=- §
sic stacking fault in this alloy. How does it compare with those in parss %'
(2) and (b)? =
13.18. (a) Calculate the stacking fault energy of pure gold at room temperatur= :;ﬁ ¢
(20°C) from measured values of the twin boundary energy. L
(b) Plot schematically the stacking fault energy of gold as a function of coz- i D

per concentration in a dilute gold—opper alloy and explain the basis of
your plot.
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13.19.

STRUCTURE AND ENERGY OF HOMOPHASE INTERFACES

Calculate the fault energies in Egs. (13.35)—(13.38) for copper and silver &

suming that &, = 0.25¢,, ¢; =0.05¢,, &4 =0.01¢, and s = 0.002¢,. Come
pare your results with the values for -y, in Table 13.3.

The grain boundary enrichment ratio By, = X/Xp for sulfur in o-irom S
been measured as 7,170 at 700°C and 15,700 at 550°C. Use these datz w =
timate the binding energy between a sulfur atom and an a-iron grain bowms
ary. Express your answer in both kJ/mol and eV/atom.

Suppose the 3, = 37 grain boundary in Figure 13.27 is copper and = &
small amount of bismuth is segregated to the boundary. What positions =i
the bismuth atoms occupy? Why?

Based on the data below (from [91]) for the amount of phosphorus

tion to grain boundaries in iron versus temperature and composition. s
late AGy, using Eq. (13.43).

033 %P

017 %P

a

\' 0064 %P

°0.046'/.P

B
5
o
k)
c
2
=
©
=
8
2
]
°
.g
£
]
s
0]

500 600 700 800
ageing temperature [°C]




	HOWEF
	HOWEF0001
	HOWEF0002
	HOWEF0003
	HOWEF0004
	HOWEF0005
	HOWEF0006
	HOWEF0007
	HOWEF0008
	HOWEF0009
	HOWEF0010
	HOWEF0011
	HOWEF0012
	HOWEF0013
	HOWEF0014
	HOWEF0015
	HOWEF0016
	HOWEF0017
	HOWEF0018
	HOWEF0019
	HOWEF0020
	HOWEF0021
	HOWEF0022
	HOWEF0023
	HOWEF0024
	HOWEF0025
	HOWEF0026
	HOWEF0027
	HOWEF0028
	HOWEF0029
	HOWEF0030
	HOWEF0031
	HOWEF0032
	HOWEF0033
	HOWEF0034
	HOWEF0035
	HOWEF0036
	HOWEF0037
	HOWEF0038
	HOWEF0039
	HOWEF0040
	HOWEF0041
	HOWEF0042
	HOWEF0043
	HOWEF0044
	HOWEF0045
	HOWEF0046
	HOWEF0047
	HOWEF0048
	HOWEF0049
	HOWEF0050
	HOWEF0051
	HOWEF0052
	HOWEF0053
	HOWEF0054
	HOWEF0055
	HOWEF0056
	HOWEF0057
	HOWEF0058
	HOWEF0059
	HOWEF0060
	HOWEF0061
	HOWEF0062
	HOWEF0063
	HOWEF0064
	HOWEF0065
	HOWEF0066
	HOWEF0067
	HOWEF0068
	HOWEF0069

